- 1201. Корреляционный анализ
Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
- 1202. Корреляционный анализ
Критические значения коэффициента парной корреляции. Планирование многофакторного эксперимента. Проверка однородности дисперсии и равноточности измерения в разных сериях. Показатели уравнения регрессии. Методы рациональной организации исследований.
- 1203. Корреляция расчетов
Определение среднего изменения результативного признака под влиянием одного или комплекса факторов. Применение метода корреляционного анализа. Соотношение дисперсий и одинакового числа наблюдений. Линейный парный коэффициент корреляции, его пределы.
Дитячі і студентські роки Михайла Пилиповича Кравчука. Викладацька і наукова діяльність математика. Репресії та реабілітація. Його роль у розвитку математичної освіти як на рівні середньої, так і вищої школи. Вшанування пам’яті українського математика.
Исследование и анализ свойств оператор-функции задачи и доказательство теоремы единственности для случая, когда одна из сред имеет поглощение. Структура спектра задачи в случае сред без поглощения. Обоснование и реализация численного метода Галеркина.
Дослідження кусково-неперервної крайової задачи Рімана на замкненій і розімкненій жорданових спрямлюваних кривих та пов'язаних з нею сингулярних інтегральних рівнянь з кусково-неперервними коефіцієнтами. Розв'язання її для кривих і заданих на них функцій.
Формулировка и сущность гипотезы Билля, исследование уравнения как параметрического с параметром A и переменными B и С. Использование метода замены переменных для доказательства данной гипотезы, условия цельности чисел В и С, одинаковой четности А и Х.
Означення і властивості подвійного та потрійного інтеграла. Перехід до полярних координат. Обчислення об’єму циліндричного тіла. Перехід до циліндричних координат потрійного інтеграла. Застосування подвійних і потрійних інтегралів до задач механіки.
Кратчайшие линии на простейших поверхностях. Свойства плоских и пространственных кривых. Геодезические линии. Изопериметрическая задача. Задачи на равновесие системы упругих нитей. Принцип Ферма и его следствия. Задача о наименьшей поверхности вращения.
Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.
Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.
Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.
Загальні відомості про інтегрування. Криволінійні інтеграли І роду: теоретичні відомості та фізичний зміст. Інтеграл Рімана як найпростіший із визначених інтегралів та є границею інтегральної суми. Методи знаходження криволінійного інтегралу I роду.
- 1214. Кривые 3-го порядка
Общие свойства алгебраических кривых третьего порядка. Краткие сведения из истории развития учения о кривых. Классификация Ньютона алгебраических кривых третьего порядка. Некоторые замечательные кривые третьего порядка. Декартов лист и циссоида Диоклеса.
- 1215. Кривые второго порядка
Рассмотрение линий и пучков второго порядка на проективной плоскости. Аффинная геометрия с проективной точки зрения. Диаметральные плоскости, как полярные плоскости несобственных точек. Проективная классификация вещественных поверхностей второго порядка.
- 1216. Кривые второго порядка
Сущность понятия и уравнение окружности в прямоугольной системе координат. Понятие и графическое изображение эллипса. Сущность и графики параболы и гиперболы. Определение и уравнение параболы. Гипербола в опыте Резерфорда при рассеивании альфа-частиц.
- 1217. Кривые второго порядка
Окружность - замкнутая плоская кривая, все точки которой одинаково удалены от центра. Изучение многих свойства кривых второго порядка при помощи характеристической квадратичной формы, соответствующей уравнению кривой. Классификация кривых второго порядка.
- 1218. Кривые второго порядка
Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений, исследование формы и параметры: полуоси, фокусное расстояние, эксцентриситет. Оптическое свойство кривых и исследование неполного уравнения кривой второго порядка.
- 1219. Кривые второго порядка
Определение и свойства эллипса, гиперболы и параболы. Фокальные радиусы точек. Система декартовых прямоугольных координат. Уравнения директрис эллипса. Канонические уравнения эллипса, гиперболы и параболы. Определение уравнений и кривых второй степени.
- 1220. Кривые второго порядка
Уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы как частные случаи уравнения. Уравнение окружности в полярных координатах. Каноническое уравнение эллипса. Вывод канонического уравнения гиперболы, ее эксцентриситет.
Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.
Кривые и поверхности 2 порядка. Понятие канонических эллипсов, гиперболы, параболы и расчет их эксцентриситета. Кривые, заданные параметрическими уравнениями. Определение полярной системы координат и положение кривых в полярной системе координат.
Общие сведения о поверхностях. Математическое обоснование плоских кривых линий. Поверхности вращения линейчатые и нелинейчатые. Поверхности с плоскостью параллелизма. Пространственные кривые линии. Конструирование поверхностей различных технических форм.
Понятие плоской кривой линии, превращение эллипса в окружность при равных осях. Построение параболы и гиперболы. Образование поверхностей вращения линейчатых и нелинейчатых. Особенности поверхностей с плоскостью параллелизма и задаваемых каркасом.
- 1225. Кривые на плоскости
Вид общего уравнения кривой второго порядка. Общее понятие про эллипс, его каноническое (простейшее) уравнение. Вещественная и мнимая полуось гиперболы. Каноническое уравнение параболы. Особенности решения нелинейных неравенств с двумя неизвестными.
Полярная система координат на плоскости. Особенности построения кривых, заданных полярными уравнениями. Зависимость между полярными и декартовыми координатами. Построение первого витка спирали Архимеда. Применение логарифмической спирали в технике.
- 1227. Критерии теории игр
Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Особенности построения матрицы выигрышей, потерь и риска. Определение терминов "максиминный" и "минимаксный" критерий. Обоснование выбора оптимальной стратегии решения задачи.
Изучение подходов к анализу случайности выборки с помощью критерия ранговой корреляции и сериальных критериев: Рамачандрана-Ранганатана, Шахнесси, Вальда-Волфовитца. Проверка гипотезы случайности ряда критерием числа серий знаков первых разностей.
Уравнение с оператором Лаврентьева-Бицадзе с двумя линиями изменения типа. Краевые задачи (задачи Трикоми, Дирихле и другие) для уравнений смешанного типа с одной или несколькими линиями изменения типа. Пример решения задачи, критерий единственности.
- 1230. Критерий согласия
Знакомство с законами Менделя. Критерии согласия как критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Способы проверки согласия экспериментальных данных теоретическому распределению.