Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
- 1172. Задача кратчайшего пути
Рассмотрение и анализ различных алгоритмов нахождения кратчайшего пути. Выявление основных методов решения задач поиска кратчайшего пути и их обоснование. Создание алгоритма, находящего кратчайший путь в ориентированном графе, его программная реализация.
Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.
- 1174. Задача о жуках
Использование формулы Эйлера для плоской сети в задаче о механических жуках, характеристика их свойств. Определение гладкой кривой линии без точек возврата в математике. Доказательство формулы канадского математика Хонсбергера из университета "Ватерлоо".
История решения математической задачи о Кенигсберских мостах. Проблема посещения семи мостовых сооружений. Создание Леонардом Эйлером теория графов. Изучение систем, составление оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете.
- 1176. Задача о назначениях
Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
- 1177. Задача о назначениях
Основы задач о назначениях в теории. Изучение истории создания венгерского метода решения задач о назначениях. Описание алгоритма решения данным методом за время порядка полинома, не зависящего от величины стоимостей. Реализация задачи о назначениях.
Формирование плана решения задачи о назначениях методом экспертных оценок. Определение коэффициентов целевой функции. Программа для реализации решения задачи. Расчет большеразмерной матрицы методом экспертных оценок. Использование вычислительной техники.
Основные понятия теории графов. Теорема о максимальном потоке и минимальном разрезе. Задача о минимальных затратах на построение сети. Модельный пример решения задачи о стоимости информационной сети с заданными пропускными способностями ветвей и узлов.
Рассматривается специальная задача об эргономичном размещении конечного числа символов по конечному числу ячеек. Решение задачи применяется для более удобного размещения английских и русских букв на клавиатуре мобильного телефона.
Пространство состояний системы. Модель дискретной управляемой системы. Задачи оптимизации многошаговых процессов в дискретных системах. Определение минимизирующей последовательности. Построение траектории управляемых процессов. Задача Больца и Лагранджа.
Основные определения теории графов. Матрицы смежности и инцидентности. Вершинная связность и реберная вязность. Теорема Менгера и выделение k непересекающихся остовных деревьев 2k–реберно связном графе. Построение k непересекающихся остовных деревьев.
Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.
Алгоритм Тэрри поиска маршрута в связном графе, соединяющем вершины. Выделение простой цепи из полученного пути. Поиск оптимального пути с наименьшим числом дуг или ребер. Прообраз множества вершин, матрица смежности. Определение расстояния в графе.
Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
Знакомство с задачей распределения работ между преподавателями кафедры. Общая характеристика функциональной модели, построенной на базе методологии SADT. Рассмотрение основных методов и особенностей многокритериальной оптимизации и эвристических процедур.
Поиск функции в заданной области, удовлетворяющей определенным условиям - аналогам условия Франкля и Бицадзе-Самарского. Единственность решения задачи. Решение сингулярного интегрального уравнения Трикоми. Применение метода регуляризации Карлемана-Векуа.
Анализ условий уравнения с независимыми переменными в конечной односвязной области. Значения функции в задаче Трикоми, освобождение от краевого условия и его эквивалентная замена нелокальным условием со смешением. Основные методы доказательства теоремы.
Слежение при неустойчивой нулевой динамике в линейных системах с одним входом. Стабилизация линейной динамической системы с одним входом и выходом. Добавление слагаемого, зависящего от заданного сигнала и его производных в замену выходных переменных.
Вивчення в повних банахових шкалах еліптичної, еліптичної з параметром і параболічної задачі Соболева для одного рівняння і для загальних систем. Умови існування узагальненого розв’язку і доведення теореми про повний набір ізоморфізмів, їх застосування.
Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
Встановлення умов коректної локальної і глобальної розв'язності гіперболічної задачі Стефана для систем рівнянь першого порядку з двома незалежними змінними. Визначення умов її існування та єдиності для квазілінійної системи рівнянь у криволінійній смузі.
Общая характеристика краевых задач Штурма-Лиувилля. Знакомство с особенностями и назначением теоремы Стеклова. Анализ свойств собственных значений и собственных функций задачи Штурма-Лиувилля. Рассмотрение обыкновенных дифференциальных уравнений.
Анализ геометрических задач, приводящих к дифференциальным уравнениям: задача о нахождении кривой наискорейшего спуска и задача о криволинейной трапеции с наибольшей площадью. Решение дифференциального уравнения, описывающее эволюцию некоторого процесса.
Использование свойств конечных сумм, для получения модификации неравенств Чебышёва. Характеристическое свойство арифметической прогрессии. Формулы суммирования, выводимые способом математической индукции. Сущность метода неопределённых коэффициентов.
Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
Финансы - один из ключевых факторов экономики. Финансовые риски и портфель ценных бумаг. Решение задач по основным разделам финансовой математики: потоки платежей, кредитные расчеты, анализ инвестиционных проектов, оценки курсов и доходностей бумаг.
Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
- 1199. Задачи линейной алгебры
Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.
Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.