Дослідження теорем про великі відхилення для логарифму відношення правдоподібності у задачі розрізнення процесів нормальної авторегресії. Застосування теореми аналізу поведінки ймовірностей помилок першого та другого роду критерію Неймана-Пірсона.
Решение задачи граничного управления процессом теплопереноса в однородном материале в рамках гиперболической модели теплопроводности. Построение классов решений задачи в одномерных, двумерных и трехмерных средах, зависящих от функциональных параметров.
Основний аналіз скінченної афінної класифікації точок комплексних підмноговидів евклідового простору. Головна характеристика кінцевої кількості класів еквівалентних точок. Особливість голоморфної кривини Черна-Лашофа та об’єму грасманового образу.
- 1114. Граф-модели для анализа сходства структур систем на основе обобщенного подструктурного подхода
Проведение исследования концепции стратификации граф-моделей, которая позволяет формировать и исследовать широкий спектр новых отношений структурного сходства систем. Главная особенность обобщения подструктурного подхода к анализу подобия орграфов.
- 1115. Графи та їх застосування
Основні означення з теорії графів, особливості їх застосування. Способи розв'язання логічних задач за допомогою дерев графів. Розгляд завдань з неоднозначними відповідями і з надлишковими даними. Приклад побудови дерева розбору арифметичного виразу.
- 1116. Графики и их функции
Изучение поведения функций и построение их графиков как важный раздел математики. Вклад в развитие графиков функций математиков древнего мира. Основные способы задания функций, методы построениях их графиков. Построение графика обратной функции.
Определение точек пересечения графиков и определение суммы абсцисс точек их пересечения. Определение ординаты точки пересечения. Построение графика параболы и перевернутой параболы, определение абсциссы точки. Пересечение графиков параболы и прямой.
Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.
Решение задач при построении графиков функций, содержащих знак модуля. Применение основного действия при построении графиков - "снятие модуля". Замена этой операции геометрическим преобразованием графиков. Раскрытие знака модуля согласно его определению.
Основные виды графических изображений, используемые при анализе результатов исследования. Применение картограмм в практической деятельности врача. Отображение динамики явлений на линейных и столбиковых диаграммах. Группы ошибок статистического анализа.
Изучение графического метода математического программирования для линейного, нелинейного, дробно-линейного, целочисленного и параметрического программирования. Решение некоторых типов задач в двумерном и трехмерном пространстве графическим способом.
Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.
Математическое определение верхней и нижней цены игры в чистых стратегиях. Расчет цены игры при оптимальных смешанных стратегиях игроков при помощи нулевой суммы и платежной матрицы. Сведение оптимальных стратегий к задаче линейного программирования.
Геометрический смысл производной. Определение значения производной для функции и отложение их на оси. Графическое дифференцирование. Признаки существования локальных экстремумов и точек перегиба. Графическая иллюстрация. Недифференцируемая точка функции.
- 1125. Графическое описание
График как наглядное изображение статистических величин и их соотношений при помощи геометрических точек, линий, фигур или географических картосхем. Сферы и особенности их применения, порядок и принципы формирования, классификация и типы, свойства.
Ознайомлення з властивостями алгебраїчних кривих другого порядку: еліпса, гіперболи та параболи. Визначення особливостей кривих третього порядку: конхоїда, епіциклоїда та гіпоциклоїда. Дослідження методів побудови параболічної та логарифмічної спіралі.
Закріплення знань учнів про зміст "графіку залежності" та спосіб побудови графіків руху та зміни температур. Вироблення вмінь будувати графіки залежності за даними таблиці відповідних значень величин, а також умінь "читати" побудовані графіки залежностей.
Дослідження можливостей Matlab для побудови графіків функцій та візуалізації даних. Використання команди plot для побудови графіків функцій у декартовій системі координат. Приклади простої програми для побудови графіків функцій з різним стилем подання.
Табличний, графічний та аналітичний способи задавання функції, їх властивості. Способи розв'язання текстових задач, заданих множиною точок координатних площин. Область визначення функції, заданої формулою. Алгоритм розв’язання рівнянь графічним способом.
Функція як один з найфундаментальніших понять математики. Особливість зображення кривої на площині. Ігнорування в курсі математики функцій кількох змінних. Характеристика графічного зображення для інтуїтивно зрозумілого тлумачення поведінки функції.
Геометрична інтерпретація задач лінійного програмування. Застосування графічного методу для розв’язування двовимірних та деяких тривимірних задач та обмеження щодо його використання. Вивчення алгоритму графічного методу та прикладів розв’язування ЗЛП.
Определение минимальной дизъюнктивной нормальной формы логической функции устройства. Таблица истинности функции. Минимизация функции алгебры логики. Задача определения простых импликант по методу Квайна-Маккласки. Синтез схемы для МДНФ в базисе Буля.
- 1133. Графы
Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.
- 1134. Графы и их применение
Знакомство с понятием "граф" и его основными элементами. Составление графов по словесному описанию отношений между предметами и существами. Решение задач при помощи графов. Применение теории графов в анализе художественного текста и стилистике переводов.
Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.
Изложение основ классической теории сводимости задач и геометрического подхода к изучению их сложности. Изучение комбинаторно-геометрических свойств задач и геометрической интерпретации алгоритмов. Исследование свойств конусного разбиения пространства.
Решение задачи маршрутизации в информационной сети, в которой имеются дуги, не влияющие на качество сигнала – нейтральные, и снижающие его качество – регрессивные. Расчет кратчайшего пути на множестве путей, удовлетворяющих дополнительному ограничению.
Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
- 1139. Греческие ученые
Демокрит - древнегреческий философ-материалист, один из первых представителей атомизма. Учение создателя религиозно-философской школы Пифагора Самосского. Биография и этические взгляды Аристотеля, разработка принципов бытия. Основы арифметики Диофанта.
Рассмотрение научного вклада Григория Перельмана в математику Советского Союза. Топология многообразий, исследование свойств поверхностей. Новаторская работа Перельмана, посвящённая решению одного из частных случаев гипотезы геометризации Тёрстона.
