- 1051. Геометрия в пространстве
Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.
Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
- 1053. Геометрия Лобачевского
Геометрия Лобачевского ("воображаемая" геометрия). Создание модели геометрии Лобачевского из материалов геометрии Евклида, а также установление непротиворечивости и законности новой геометрической системы, разные геометрии и разные пространства.
- 1054. Геометрия Лобачевского
Математика как наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов. Биография Николая Лобачевского. Начало преподавательской деятельности. Применение неевклидовой геометрии.
Н.И. Лобачевский и его геометрия. Пятый постулат Евклида. Теорема о существовании параллельных прямых. Взаимное расположение двух прямых на плоскости Лобачевского. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника.
Основные понятия геометрии Лобачевского с приведением некоторых примеров теорем неевклидовой геометрии и различные приложения геометрии Лобачевского. Рассмотрение моделей (интерпретаций) данной геометрии, а также моделей Бельтрами, Кэли-Клейна, Пуанкаре.
Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.
Значение геометрии в практической деятельности человека, история ее развития. Созидательная сила прямого угла. Геометрия в величайших архитектурных сооружениях: Тадж-Махал, египетская пирамида, русские церкви. Применение окружности в строительстве.
Рассмотрение K3 поверхностей, являющихся полным пересечением. Доказательства образования дивизоров в пространстве всех квартик, содержащих коники. Нахождение степени дивизоров. Нахождение числа прямых в пучках K3 поверхностей второго и третьего типа.
Обзор комбинаторно-геометрических интерпретаций спорадических групп. Исследование особенностей автоморфизмов блок-схем специального вида. Геометрические интерпретации спорадических групп в виде диаграмм. Рассмотрение сущности классификационной теоремы.
Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
- 1062. Геометрия чисел
Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.
Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.
Вивчення властивостей паралелограма та трапеції. Дослідження видів чотирикутників. Узагальнена теорема Фалеса. Середня лінія трикутника і трапеції. Теорема Піфагора. Розв'язування прямокутних трикутників. Опис ознак ромбу та квадрату. Подібність фігур.
Розробка геометричних засобів фазового простору функцій комплексних змінних як основу формування областей стійкості та оптимізації параметрів регульованих систем. Дослідження особливостей графоаналітичного відображення областей параметрів многочленів.
Дослідження властивостей грасманового відображення підмноговидів у різних класах груп Лі з лівоінваріантною метрикою. Визначення критеріїв гармонійності грасманового відображення підмноговиду для загального випадку групи Лі та ряду окремих випадків.
Визначення способів геометричного моделювання параметрів впливу на динаміку зміни формоутворюючих якостей власних та падаючих тіней на поверхнях при освітленні прямим сонячним світлом з урахуванням реальних проектних, кліматичних та світлових умов.
- 1068. Геометрія фракталів
Історія виникнення й класифікація фракталів, що у широкому розумінні означають фігури, малі частини якої в довільному збільшенні є подібними до неї самої. Типи самоподібності у фракталах, пояснення розмірності. Використання на радіолокаційних зображеннях.
Обзор одного из направлений векторного исчисления – геометрического. Характеристика сведений о научной деятельности Германа Грассмана. Анализ основ его учения о протяженности, расширении свойств евклидовой плоской геометрии на n-мерное пространство.
Простота реализации процедуры кодирования фенотипа особи в ее эквивалентный генотип как одно из ключевых достоинств генетического алгоритма в вещественных кодах. Анализ зависимости ошибки определения глобального минимума функций от числа итераций.
Понятие гильбертовых пространств аналитических функций. Доказательство теоремы о том, что открытый или единичный круг, квадратично интегрируемых аналитических функций в области D является гильбертовым пространством. Определение пространства Харди.
Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.
- 1073. Гиперкомплексные числа
История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.
Знайомство з творчістю фінського філософа Гінтіка. Особливості Кантової теорії математичного методу. Розгляд парадигматичного характеру Евклідового методу для Кантової теорії математики. Способи розрізнення аналізу і синтезу як двох різних методів доказу.
Побудова аналітичного розв’язку методом гібридних інтегральних перетворень. Вирішення гіперболічних крайових задач математичної фізики через зображення. Дослідження компонентів зв’язності кусково-однорідного середовища. Розгляд диференціальних операторів.
Побудова точного аналітичного розв'язку алгоритмічного характеру гіперболічної крайової задачі математичної фізики в обмеженому кусково-однорідному просторовому середовищі. Використання методу головних зв'язків (функцій впливу та функції Гріна).
Характеристика гіперболоїда як виду поверхні другого порядку в тривимірному просторі, що задається в декартових координатах. Однопорожнинний та двопорожнинний гіперболоїди. Дослідження перетину поверхні площинами, паралельними координатами або площинами.
Знаходження найбільш широкого класу відображень, у якому можливо одержати оцінки спотворення модулів сімей поверхонь. розвиток теорії модулів та знаходження нових умов, що забезпечують усувність особливостей гомеоморфізмів, їх неперервне продовження.
Рассмотрение истории возникновения математики, ее роли в физической науке. Изучение основных открытий новаторов Нового времени - Рене Декарта и Галилео Галилея. Различные математические свойства физических тел. Роль индукции и эмпирических методов.
Особенности кусочно-линейной аппроксимации отображений как решения эллиптической системы уравнений и их дифференциалов по значениям в узлах треугольной сетки. Способы оценки ее погрешности, не зависящей от степени вырожденности треугольников сети.
