Исследование фредгольмовой разрешимости смешанных задач для параболического уравнения
Понятие дифференцируемости на замкнутой области. Анализ пространства Соболева в теоретических и прикладных вопросах математической физики и функционального анализа. Обзор теоремы о пополнении интеграла Лебега. Множество метрического пространства.
Рубрика | Математика |
Предмет | Дифференциальные уравнения |
Вид | реферат |
Язык | русский |
Прислал(а) | Иванова Ксения Григорьевна |
Дата добавления | 02.07.2013 |
Размер файла | 455,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.
курсовая работа [232,5 K], добавлен 12.10.2009Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.
диссертация [2,8 M], добавлен 19.06.2015Наделение множества метрикой, основные аксиомы метрического пространства. Равномерная метрика, нормы элементов и линейное пространство. Фундаментальная последовательность элементов линейного нормированного пространства. Понятие банахова пространства.
реферат [375,9 K], добавлен 04.12.2011Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа [354,0 K], добавлен 08.08.2007Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.
курс лекций [134,0 K], добавлен 02.06.2013Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат [249,4 K], добавлен 21.01.2011Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа [440,4 K], добавлен 27.05.2015Особенности неподвижного геометрического трехмерного пространства, его отличительные признаки от подвижного пространства. Отличия физической сущности скорости от математической. Понятие производной вектора по времени, методика и этапы ее определения.
статья [174,3 K], добавлен 25.12.2010Теорема о промежуточных значениях; точка отрезка, в которой функция обращается в ноль. Первая и вторая теоремы Вейерштрасса. Теорема Кантора, равномерно-непрерывная функция на промежутке. Функционалы непрерывные на компакте метрического пространства.
задача [141,7 K], добавлен 28.12.2009Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация [179,4 K], добавлен 30.10.2013