Исследование линейной устойчивости относительно нормальных возмущений адвективного течения во вращающемся слое жидкости с твердыми границами методом дифференциальной прогонки. Амплитуды возмущений скорости и температуры в виде системы уравнений.
Освоение графического метода решения задач линейного программирования. Оптимальный недельный план производства, при котором прибыль будет максимальной. График оптимизационной задачи. Координаты вершин многоугольника допустимых решений и значения функции.
Геометрическая интерпретация задачи линейного программирования. Методы исследования и отыскания наибольших и наименьших значений функции, на неизвестные которой наложены линейные ограничения. Условный экстремум функции. Векторная и матричная форма записи.
- 1264. Линейное уравнение
Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.
Решение систем линейных алгебраических уравнений как одна из основных задач вычислительной линейной алгебры, рассмотрение основных способов. Общая характеристика метода Гаусса. Анализ схемы единственного деления. Знакомство с особенностями метода Зейделя.
Построение общего решения характеристического однородного уравнения. Запись неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью. Применение метода Лагранжа вариации произвольных постоянных.
Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.
Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.
Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.
Условия ортогональности линейного преобразования. Независимость ортонормированной системы векторов. Стандартное евклидово пространство и ортогональные матрицы. Геометрический смысл собственного преобразования А. Доказательства леммы. Индукция векторов.
Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.
Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
Примеры различных операций и вычислений с векторами и матрицами в линейной алгебре. Теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования. Алгоритм оценки величины и нахождения собственных значений. Отношение Рэлея.
- 1275. Линейные уравнения
Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.
- 1276. Линейные уравнения
Изучение линейных однородных уравнений с постоянными коэффициентами (случай простых и кратных корней), их фазовая плоскость. Расчет показателей нормальной линейной однородной и линейной неоднородной системы с постоянными коэффициентами в математике.
Методы приближенного аналитического решения задачи Коши для уравнений гемодинамики с вязким трением. Математическое моделирование процесса развития гемодинамических течений с растущей во времени амплитудой пульсовой волны в сосудах Виллизиева круга.
Матриця називається квадратною, якщо кількість її рядків співпадає із кількістю стовпців. Нульова матриця. Основні властивості матриць. Додавання та множення матриць. Вектор є частковим випадком матриці. Трансформація матриць, їх практичне використання.
Множення вектора на речове число. Упорядковані набори речовинних чисел. Додавання і множення векторів на число. Комплексний безкінечномірний векторний простір. Визначений скалярний добуток. Елементи векторного простору та поняття полей скалярів.
Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
Поняття насичення та регулярності для загальних лінійних методів підсумовування рядів Фур'є. Характеристика, значення та сутність лiнiйного методу за тригонометричною системою. Порядки та класи насичення для методів Зігмунда, Рогозинського, Фавара.
Лінійні однорідні та неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами, розв'язок за формулою Ейлера. Рівняння із спеціальною правою частиною, використання методу Лагранжа. Рішення лінійних диференціальних рівнянь n-гo порядку.
Означення лінійного оператора і його найпростіші властивості, операції, завдання, характеристичний многочлен і власні значення. Сутність матриць та їх типи, можливі операції та дії. Властивості поліному. Алгебра лінійних операторів і алгебра матриць.
Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
Асимптотичний метод інтегрування системи з малим параметром при частині похідних з точкою звороту. Властивості розв'язків сингулярно збуреного матричного диференціального рівняння. Системи диференціальних рівнянь з лінійним відхиленням аргументу.
Вивчення дисипативної системи розсіяння з пк-просторами станів та їх передавальних функцій. Доведення теореми про належність передавальних функцій систем до класів Шура. Результати застосування до дослідження множини самоспряжених оборотних розв’язків.
Аналіз апроксимативних характеристик класів періодичних функцій багатьох змінних. Встановлення точних за порядком оцінки ортопроекційних поперечників класів періодичних функцій. Порівняння результатів з оцінками лінійних та колмогоровських поперечників.
- 1288. Лінія виразів
Вдосконалення обчислювальних навичок школярів; формування формально-оперативних умінь. Формування умінь виконувати перетворення цілих і дробових раціональних та ірраціональних виразів. Посилення ролі індуктивних та дедуктивних міркувань; логічне мислення.
Изучение жизненного пути и научной деятельности Лобачевского Николая Ивановича - великого математика, одного из творцов неевклидовой геометрии. Юношеские и студенческие годы. Педагогическая, административная и исследовательская деятельность ученого.
- 1290. Логарифми
Визначення логарифма, десяткові та натуральні логарифми. Способи обчислення арифметичних виразів. Основні та другорядні логарифмічні тотожності. Логарифмічна функція, її властивості та похідні. Розробка таблиць логарифмів англійськім математиком Непером.