Исследование функций
Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
Рубрика | Математика |
Предмет | Линейная алгебра |
Вид | шпаргалка |
Язык | русский |
Прислал(а) | Артём |
Дата добавления | 11.04.2012 |
Размер файла | 175,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.
курсовая работа [222,3 K], добавлен 11.01.2011Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.
контрольная работа [180,3 K], добавлен 25.03.2014Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлен 11.01.2004Введение новых динамических систем и их решений, специальных функций эллиптических и тета-функций, зависящих от одного параметра, разложение эллиптических функций Якоби в ряды Фурье (теоремы разложения). Рассмотрение их связи с функцией Вейерштрасса.
курсовая работа [1,9 M], добавлен 26.04.2011Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа [836,0 K], добавлен 09.12.2013Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.
презентация [298,3 K], добавлен 11.09.2011Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011