Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.
История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.
Изложение теории математического анализа. Обзор тем курса: предел функции; основы дифференциального исчисления; исследование функции и построение графика; функции двух переменных; неопределённый и определённый интегралы; дифференциальные уравнения; ряды.
История возникновения математики. Концептуализация числа и изобретение основных действий: сложения, вычитания, умножения и деления. Создание счётных устройств. Развитие высокотехнологичной, образованной и обеспеченной цивилизации благодаря математике.
Математика – наука о количественных отношениях и пространственных формах действительного мира. Исторические этапы ее развития. Взгляды на математику выдающегося деятеля прошлого и настоящего Н. Лобачевского. Биография создателя неевклидовой геометрии.
Рассмотрение математических задач, связанных с шахматной доской и шахматными фигурами. Задача на покрытие шахматной доски костями домино. Рассмотрение шахматной игры и проблем, связанных с ней. Задачи на разрезание и математика шахматных фигур.
- 1957. Математика Средних веков
Развитие китайской математической науки. Решение систем линейных и алгебраических высших степеней уравнений методами фан-чэн и тянь-юань. Индийская десятичная система нумерации и введение линий синуса. Арифметика в странах арабского и европейского мира.
- 1958. Математика у футболі
Футбольний м’яч як спортивний інвентар, ікосаедр чи куб. Математичні секрети "класичного" та сучасного футбольних м’ячів. Теоретична модель поведінки футбольного м'яча, "підрахунок" многокутників, з яких можна скласти поверхню, близьку до поверхні кулі.
Применение методов математических знаний в физике. Информатика как наука, которая переплетается с математикой. Первое ее по времени применение в биологии, связанное с обработкой результатов наблюдений. Применение математики в исторической ленте времени.
Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.
Кратка історія життя, наукові дослідження, досягнення та роботи видатних російських та українських математиків і вчених суміжних галузей Лобачевського М.І., Чебишова П.Л., Ковалевської С.В., Остроградського М.В., Буняковського В.Я. та Ломоносова М.В.
- 1962. Математики України
Біобібліографічні розповіді-дайджести про деяких математиків з України, які внесли значний вклад у світову та європейську науку: Вороного, Кравчука, Остроградського, Глушкова, Зарицького, Левицького, їх особисте життя, наукові відкриття і досягнення.
Біографічні дані про життя Паскаля - французького релігійного філософа, математика і фізика. Публікація першого математичного трактату "Досвід теорії конічних перетинів". Дослідження Гаусса в теоретичній фізиці, створення електромагнітного телеграфу.
Рассмотрение связи с различными аспектами жизнедеятельности человека понятия "золотое сечение". Эстетика как отдельная наука, изучающая сущность красоты. Методы расчета биноминальных элементов. Числовые закономерности, последовательность Фибоначчи.
- 1965. Математическая индукция
Понятие математической индукции. Полная и неполная индукция. Дедуктивный и индуктивный методы рассуждений. Обнаружение математических закономерностей Суть и условия применения метода математической индукции в образовательном процессе, в решении задач.
- 1966. Математическая индукция
Исследование особенностей математической индукции, одного из методов доказательства истинности некоего утверждения для всех натуральных чисел. Характеристика аксиомы Пеано, аксиомы существования минимума, доказательства аксиомы индукции как теоремы.
- 1967. Математическая логика
Математическая логика как формальный математический аппарат, изучающий различные способы логических рассуждений. Рассмотрение теоремы дедукции. Анализ логических операций: конъюнкция, дизъюнкция, отрицание. Особенности проверки правильности рассуждений.
- 1968. Математическая логика
Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.
- 1969. Математическая логика
Характеристика основ нечёткой и модальной логики. Знакомство с примерами экспертных систем. Место математической логики в информационных технологиях и программировании. Рассмотрение правил записи сложных формул. Особенности метода дедуктивного вывода.
Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.
Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.
Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.
Исчисление высказываний. Свободные и связанные переменные. Дизъюнкты и нормальные формы. Анализ примеров использования метода резолюций в логике высказываний. Непротиворечивость аксиом. Аксиоматизация логики высказываний. Применение логических связок.
Предмет математической логики. Недостатки формальной логики. Сущность понятия "высказывание". Сущность отрицания, конъюнкции. Алгебра логических значений. Главные особенности импликации. Эквивалентность как вид выражения операции. Блок управления памятью.
Вырождение математической мифологии: конструкции как парадигмальные схемы. Рассмотрение математики как эстетического феномена и пангеометризма как способа понимания природы. Взаимосвязь между разнообразными сторонами философского культурного организма.
Разработка математической модели оценки совместимости индивидуумов в процессе их взаимоотношений. Определение степени согласования интересов индивидуумов в группе. Расчет оптимальных соотношений пропорций выигрышей индивидуумов по матрице предпочтений.
Анализ математической модели оценки возможности студента высшей школы завершить обучение, получив диплом с отличием. Описание способа, позволяющего планировать получение хороших и отличных оценок студентами, ставящими целью получение диплома с отличием.
Представление подводной лодки в виде материальной точки с приложением действующих на нее сил. Выведение системы дифференциальных уравнений и получение траектории движения лодки, заданной параметрически. Численные решения системы и построение графиков.
Знакомство с основными особенностями разработки математической модели гидропривода для станка ОК-63. Анализ принципиальной схемы гидравлического привода рабочего органа окорочного станка. Рассмотрение особенностей математического аппарата системы MatLab.
Постановка математической модели механической системы, представляющая собой трубу кольцевого профиля, образованную двумя поверхностями соосных цилиндрических оболочек, взаимодействующими с пульсирующим тонким слоем. Граничные условия прилипания жидкости.