Дослідження нових типів систем N-арних інтегральних рівнянь. Двовимірні системи парних та потрійних інтегральних рівнянь з функціями Бесселя. Системи потрійних інтегральних рівнянь з функціями Ватсона. Теореми про умови існування розв’язків цих систем.
Застосування методів оптимізації в нафтопереробній промисловості. Пошук мінімального дерева Штейнера. Аналіз розподілу множини вершин графа на сукупність оболонок та їх сполучення. Розробка програмного забезпечення для розв’язання задачі комівояжера.
История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
Подходы к доказательству теоремы Ферма и обоснование ее физического смысла. Принципы и этапы решения исследуемой задачи с использованием современных технологий. Описание физической сущности идей, заложенных в абстракции общей теории относительности.
Решения, на основе которых определяется природа процессов, протекающих в турбулентном режиме текучести. Обобщение формулы Хагена-Пуазейля, интерпретация природы констант вязкости на базе возможностей новых решений, полученных из уравнений механики Гиббса.
Понятие нормального распределения, также называемого гауссовским распределением, его свойства и причины его популярности в финансах. Моделирование нормальных случайных величин. Определение коэффициента Шарпа. Вычисление вероятностей и риск-метрик.
Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.
Определение вероятности попадания случайной величины, подчиненной нормальному закону, на заданный участок. Изучение и анализ нормальной функции распределения. Исследование максимальной ординаты кривой. Характеристика гистограммы с равными интервалами.
Плотность распределения нормальной случайной величины. Вычисление ее дисперсии, математического ожидания и среднеквадратического отклонения. Интегральная функция Лапласа. Правило "трех сигм". Понятие "двумерной" величины. Формула условной вероятности.
Основные теоретические положения нормального закона распределения (закон распределения Гаусса) уровня ряда, его применение при работе с непрерывно изменяющимися переменными. Способ группирования результатов измерений относительно среднего значения.
Рассмотрение знаменитой пятой гипотезы Римана, высказанной им еще в середине XIX века. Голоморфное продолжение дзета-функции на выколотую комплексную плоскость за исключением простого полюса. Представление любой функции в виде конечной суммы функций.
Математика как наука о количественных отношениях и пространственных формах действительного мира. Ее роль в современном обществе и этапы развития. Основы построения математической теории. Вклад Ньютона в создание физико-математического естествознания.
Доказательство бесконечности регулярных простых чисел. Делимость числителей чисел Бернулли. Делимость чисел при сравнении по ненулевому рациональному модулю. Частные случаи делимости целых и дробных чисел. Простые числа в арифметических прогрессиях.
Формулировка проблемы достижения условия непрерывности G и описание соответствующих уравнений для решения этой задачи. Функционалы "сдвиг кривой" и Квази-G1. Решение вариационных задач без ограничений в соответствии с теоремой Ферма, описание алгоритма.
Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.
Разработка теоремы, утверждающей, что заданная структура определяет на многообразии D структуру косимплектического Би-метрического многообразия тогда, когда распределение D многообразия M является распределением нулевой кривизны. Доказательство теоремы.
- 1937. О гипотезе Вороного
Задача установления факторизации непроизводимых полиномов с целыми коэффициентами по простым модулям. Квадратичный и кубический законы взаимности. Поиск условий, которым должно удовлетворять простое число р, чтобы получить определенный тип факторизации.
Характеристика понятий топологического пространства и гомеоморфизма, которые являются фундаментальными в математике. Выявление метрических и топологических свойств объектов. Структура и свойства гладких многообразий. Деформации реальных объектов.
Приведены результаты эмпирических исследований составных чисел Мерсенна вида Mp=2p–1. Поставлена следующая задача – определить наименьшие простые делители составных чисел Мерсенна. Показаны примеры использования метода факторизации чисел Мерсенна.
Анализ вопросов, связанных с приведением бесконечных матриц с суммируемыми диагоналями к диагональному или блочно-диагональному виду с помощью преобразования подобия. Характеристика условий, при которых это возможно. Оценка собственных значений матрицы.
Наикратчайшее элементарное доказательство последней теоремы Ферма. Доказательство делимости числителей чисел Бернулли. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных.
- 1942. О задаче с операторами М. Сайго на характеристиках для вырождающегося гиперболического уравнения
Исследование нелокальной задачи для вырождающегося уравнения гиперболического типа в характеристической области, условия которой содержат обобщенные операторы дробного интегродифференцирования на характеристиках. Доказательство однозначной разрешимости.
Изучение основных законов распределения дискретных случайных величин. Применение на практике основных расчетов и теорий биномиального распределения. Сущность закона распределения случайных величин, формулы Бернулли и ее применение в теории вероятности.
Применение ортонормированных базисов в квантовой физике. Исследование зависимости константы неопределенности от коэффициентов линейных комбинаций функций Эрмита. Ортогональные преобразования, уменьшающие константу неопределенности для всех функций базиса.
Связь корреляционно-иммунных булевых функций с кодами и ортогональными массивами. Линейные и квазилинейные переменные. Оптимизация неравенства Зигенталера для каждой отдельной переменной. Теорема для регулярных функций типа теоремы Симона-Вегенера.
Рассмотрение особенностей применения методов Монте-Карло с цепями Маркова в экономических исследованиях. Интуитивное обоснование алгоритма Метрополиса. Изучение гиббсорского выбора и маргинальной функции плотности двумерного нормального распределения.
Рассмотрение семейства кривых на плоскости. Определение сущности огибающей семейства - линии, которая в каждой своей точке касается одной из линий семейства. Изучение понятия эволюты и эвольвенты. Исследование процесса построения сопряженного профиля.
Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
Практические следствия методологии прикладной статистики. Использование асимптотических результатов при конечных объемах выборок. Выбор одного из многих критериев для проверки конкретной гипотезы. Введение моделей деятельности математика и прикладника.
Внутренняя связность и N-связность. Равенство, характеризующее многообразие Кенмоцу. Структура многообразия Кенмоцу. Определение допустимых тензорных полей. Контактная метрическая структура. Фундаментальная форма структуры кососимметрического тензора.