Метод установления границ начального отрезка локализации минимума
Сущность и содержание исследуемого метода как процедуры эвристического типа, предваряющей использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума. Алгоритм Свенна, его этапы и назначение. Метод деления пополам.
Рубрика | Математика |
Предмет | Математические методы |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Инна |
Дата добавления | 05.07.2014 |
Размер файла | 89,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.
лабораторная работа [151,3 K], добавлен 15.07.2009Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа [533,9 K], добавлен 26.04.2014Вычисление корня функции нелинейного уравнения методом деления отрезка пополам. Способы ввода, вывода и организации данных. Модульная организация программы. Разработка блок-схемы алгоритма задачи. Порядок создания программы на алгоритмическом языке.
реферат [30,0 K], добавлен 28.10.2010Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
контрольная работа [253,0 K], добавлен 07.06.2011Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.
контрольная работа [694,0 K], добавлен 27.02.2013Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.
курсовая работа [181,1 K], добавлен 13.04.2010Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.
контрольная работа [878,3 K], добавлен 26.12.2012Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа [361,5 K], добавлен 10.06.2014Структура и принципы решения линейных уравнений. Метод Крамера и Гаусса, Ньютона, половинного деления, секущих. Отличительные особенности и условия применения графического метода. Содержание теоремы Штурма. Принципы и основные этапы поиска интервалов.
реферат [948,7 K], добавлен 30.03.2019