Методические указания и алгоритмы по определению показателей вариации: размаха вариации, квартилей и квартильного отклонения, среднего линейного и квадратического отклонения, дисперсии, коэффициентов осцилляции, вариации, асимметрии, эксцесса.
Расчет вероятности безотказной работы автотранспортных средств. Графическое представление эмпирического распределения. Вычисление математического ожидания и дисперсии. Оценка среднего квадратического отклонения. Проверка по критерию Пирсона и Колмогорова.
Типы правильных многогранников: тетраэдр, октаэдр, гексаэдр, икосаэдр и додекаэдр. Содержание теоремы Эйлера. Свойства правильных многогранников. Нахождение двугранного угла при ребре икосаэдра. Вычисление площади полной поверхности многогранника.
Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.
Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.
Нахождение оценки математического ожидания и дисперсии случайной величины и вероятности ее попадания в заданный интервал. Определение доверительных интервалов для математического ожидания и дисперсии, соответствующих заданной доверительной вероятности.
Дискретные и непрерывные случайные величины. Функция распределения вероятностей случайной величины и ее свойства. Плотность распределения вероятностей. Числовые характеристики непрерывных случайных величин. Законы распределения, теорема Ляпунова.
Расчет оценок математического ожидания и дисперсии для заданной реализации стационарного эргодического случайного процесса. Аппроксимация полученной оценку корреляционной функции аналитическим выражением. Расчет показателей функции спектральной плотности.
Определение понятия булевой функции как n-местной алгебраической операции на множестве. Нахождение фиктивных и существенных переменных. Алгоритм определения переменных. Принцип построения блок-схемы и листинг для программы нахождения фиктивной функции.
- 2081. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.
- 2083. Определенные интегралы
Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.
- 2084. Определенный интеграл
Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.
Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
- 2086. Определённый интеграл
Определение определённого интеграла. Длина дуги кривой, прямоугольные координаты. Теорема Лагранжа о конечном приращении функции. Способы нахождения площади криволинейной трапеции. Площадь поверхности вращения. Строгое изложение теории интеграла О. Коши.
- 2087. Определённый интеграл
Характеристика предела интегральной суммы функции, когда число частичных отрезков неограниченно возрастает, а длина наибольшего из них стремится к нулю. Рассмотрение алгоритма вычисления определённого интеграла. Последствия замены переменной в интеграле.
- 2088. Определённый интеграл
Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.
Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.
Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
Математическое построение оптимального плана и нахождение экстремального значения его функции. Построение двойственной задачи линейного программирования и её целочисленное решение. Описание области допустимых значений переменных, их максимальные функции.
Математичне дослідженню задач оптимального керування для нелінійної кінетичної системи. Використання моделі Моно-Ієрусалимського для вивчення росту мікроорганізмів. Встановлення асимптотичної стійкості ковзних режимів системи турбідостат та хемостат.
Пошук явного вигляду або розрахункових алгоритмів для цільових функцій оптимізаційних задач пошуку максимуму середнього прибутку та мінімуму ризику через параметри відповідних мереж. Дослідження залежностей для генератрис процесу обробки інформації.
Дослідження широких класів некоректних задач і побудова ефективних алгоритмів їх розв’язування, які гарантують досягнення оптимальної за порядком точності наближення. Розробка ефективних алгоритмів, які використовують адаптивну стратегію дискретизації.
Рассмотрение задачи точного терминального управления для дискретных систем на основе метода штрафных функций. Доказательство равномерной сходимости траекторий и управлений "штрафной" и "вырожденной" задач при неограниченном увеличении коэффициента штрафа.
Классическая постановка задачи оптимизации. Стандартные методы решения. Численные методы оптимизации. Применение моделей оптимизации. Особенности, связанные с применением аналитических методов оптимизации. Алгоритм аналитической оптимизации функций.
Математическая формулировка комплексного метода Бокса. Понятие целевой функции. Основные разновидности целевых функций. Понятие системы граничных условий, разновидности систем граничных условий. Условная и безусловная оптимизация, области применения.
Неотрицательная нетривиальная и равная нулю линейная комбинация градиентов тех функций, которые определяют активные ограничения в исследуемой точке. Необходимые и достаточные условия Куна-Таккера. Условия регулярности и задачи со смешанными ограничениями.
Вычисление критериев при помощи имитационного моделирования. Расчет среднего времени до ухода первого нетерпеливого клиента из очереди для каналов обслуживания. Подсчет удельного дохода в стационарном режиме. Особенность решения задачи оптимизации.
Розглянуто задачі параметричної оптимізації динаміки пучків траєкторій в системах з проміжними умовами, що накладаються на траєкторії системи в заданій множині точок. Досліджено нові постановки таких задач для неперервних та дискретних випадків.