• Расчет значений коэффициентов запаса и прогибов в середине балки. Поиск Парето-оптимальных решений для заданных условий задачи. Вычисление расстояния балки до идеального. Оформление результатов расчетов с использованием программы MS Excel, их анализ.

    контрольная работа (154,2 K)
  • Основы статистической теории машинного обучения. Задачи классификации и регрессии с опорными векторами. Теории обобщения Вапника-Червоненкиса и алгоритмы построения разделяющих гиперплоскостей. Задачи адаптивного прогнозирования в режиме онлайн.

    учебное пособие (1,6 M)
  • Динамическое программирование при разработке правил управления запасами, распределении ресурсов между проектами, планировании ремонта оборудования. Принцип оптимальности и уравнение Беллмана. Создание проекта с помощью методов сетевого моделирования.

    контрольная работа (625,6 K)
  • Формирование матрицы А размера nxm посредством цикла for. Разработка математической модели. Математические операции с полученными выражениями. Формирование двух произвольных матриц А и В порядка m при помощи цикла for и генератора случайных чисел rnd.

    контрольная работа (169,4 K)
  • Изучение математических моделей линейной и нелинейной фильтрации жидкости в пористых средах. Вывод уравнений двумерной линейной фильтрации в анизотропных средах. Проведение расчетов в слоистых средах методами однородно-анизотропного эквивалентирования.

    автореферат (449,8 K)
  • Термины математического моделирования. Построение моделей, имитационные системы. Математическое описание систем дискретного управления. Теорема Котельникова-Шеннона. Дискретизация автономных систем. Преобразование непрерывного сигнала в цифровой код.

    статья (57,1 K)
  • Структурированная кабельная система - набор коммуникационных элементов, которые удовлетворяют сетевым стандартам путем добавления сегментов, коммутаторов. Элементы методико-алгоритмического аппарата анализа и оптимизации локальной компьютерной сети.

    автореферат (630,0 K)
  • Анализ актуальности проблемы безопасности интеллектуальных машин для человека. Характеристика особенностей математических моделей и алгоритмов оценки безопасности роботов. Характеристика теоремы об опасности роботов с абсолютной памятью для человека.

    статья (26,4 K)
  • Характеристика математической модели реальной конфликтной ситуации. Особенность формализации игры. Главный анализ нижней и верхней цены игрового процесса. Седловая точка в платежной матрице. Решение системы в смешанных стратегиях геометрическим методом.

    реферат (149,6 K)
  • Разработка и проверка методических основ для модернизации существующих образцов вертолетов под учебно-тренировочный вариант применения, обеспечивающих повышение качества обучения летного состава, снижение стоимости и повышение безопасности обучения.

    автореферат (1,2 M)
  • Криптология как наука, занимающаяся методами шифрования и дешифрования. Выделение мультипликативной группы кольца вычетов. Группа в математике и ее множественные элементы с определённой на нём ассоциативной бинарной операцией. Свойства колец и полей.

    курс лекций (747,3 K)
  • Качественный анализ линейной и нелинейной динамических систем, определение условий их устойчивости и построение фазовых портретов в программе WINSET. Вычисление дифференциальных уравнений Бюргерса. Компьютерное исследование уравнения на фазовой плоскости.

    контрольная работа (1,3 M)
  • Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.

    курс лекций (2,1 M)
  • Отношения бинарные и N-арные. Декартово произведение. Бинарные отношения. Операции над бинарными отношениями. Функциональные отношения. Бинарные отношения на множестве. Матрица, представляющая функциональное отношение. Отношение эквивалентности.

    реферат (32,8 K)
  • Многообразие парадоксов и их причины (парадоксы Греллинга и Бери). Парадоксы как петли (литографии К. Эшера). Абстракции и иерархические языки. Парадоксы, связанные с теорией множеств, открытия Кантора и парадокс Рассела, кризис основ математики.

    реферат (34,0 K)
  • Парадокс как ситуация, которая может существовать в реальности, но не имеет логического объяснения. Классификация и описание математических парадоксов. Сущность парадоксов: лжеца, Эпименида, Платона и Сократа, Пиноккио, исчезновения клетки, Галилея.

    презентация (684,9 K)
  • Построение множества решений систем линейных неравенств. Поиск координат их угловых точек. Получение графической модели решения стандартной математической задачи. Проверка оптимальности опорного плана. Анализ этапов составление платежных матриц.

    задача (184,4 K)
  • Архитектура пчелиных сотов. Деление единого пространства на соты с точки зрения геометрических принципов. Математическая модель Тота. Способы закупорки сот при помощи пар шестиугольников и квадратов и при помощи трех равносторонних четырехугольников.

    творческая работа (815,3 K)
  • Описание основных свойств и области определения математических функций: линейной, степенной, квадратичной, показательной, логарифмической. Построение графиков. Множество значений функции синус, тангенс, котангенс. Обратные тригонометрические функции.

    контрольная работа (70,0 K)
  • Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.

    курс лекций (1,2 M)
  • Формирование умения дошкольников соотносить количество предметов с числом. Обучение различать геометрические фигуры: круг, квадрат, треугольник. Закрепление понятий "длинный-короткий", "высокий-низкий". Развитие у детей внимания, фантазии и памяти.

    конспект урока (15,4 K)
  • Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.

    учебное пособие (242,1 K)
  • Установление геометрического вида поверхности, получение гипербол и эллипсов в сечениях плоскости. Элементы образующие математическое множество, возможные операции над этими объектами. Понятия гиперболического параболоида, двуполостного гиперболоида.

    лекция (246,9 K)
  • Введение в анализ и дифференциальное и интегральное исчисление одного переменного. Локальные экстремумы и эскиз графика. Поведение функции вблизи точки разрыва и вычисление производной. Особенности дифференциального исчисления функций и его приложение.

    контрольная работа (142,8 K)
  • Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.

    курс лекций (568,5 K)
  • Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.

    шпаргалка (163,8 K)
  • Множество чисел как упорядоченное множество бесконечных десятичных дробей. Изучение ограниченных и бесконечно малых последовательностей. Изучение первообразной функции и неопределенного интеграла. Дифференциальное исчисление функций многих переменных.

    курс лекций (702,8 K)
  • Программа дисциплины "Математический анализ". Методические указания по самостоятельной работе, выполнению контрольных работ, подготовке к сдаче экзамена. Основы дифференциального и интегрального исчисления. Теория рядов, функции нескольких переменных.

    методичка (962,1 K)
  • Определение понятий производной и интеграла. Виды множеств для вещественных чисел. Геометрический и физический смысл дифференциала. Интегрирование рациональных, тригонометрических и иррациональных функций. Свойства числовых и функциональных рядов.

    курс лекций (1,2 M)
  • Пределы функции, её исследование. Неопределенный и определенный, несобственный интеграл, его практическое применение. Числовые и степенные ряды, сходимость, признак Даламбера, принцип Лейбница. Функции нескольких переменных, дифференциальные уравнения.

    контрольная работа (462,2 K)