Оптимізація формул наближеного інтегрування. Розрахунок "інтервальної" формули з довільними та фіксованими вузлами, оптимальний алгоритм наближеного відновлення інтегралу, що має обмеження на градієнт. Кубатурна формула центрів вузлових паралелепіпедів.
Теоретические основы выборочного наблюдения. Средний арифметический показатель и особенности его использования. Дисперсия, ее сущность и значение. Определение ошибки выборки. Порядок исследования социально-экономических явлений выборочным методом.
Статистическое наблюдение как один из главных методов статистики и как одна из важнейших стадий статистического исследования, основные этапы его проведения, цели и задачи. Программа статистического наблюдения, его формы и типы. Ошибки наблюдения.
Характеристика используемых статистических показателей, вида, единицы измерения. Оценка структурных средних на основе структурной группировки. Расчет абсолютных и относительных показателей динамики для выбранного показателя. Выявление наличия взаимосвязи.
- 2105. Оригами в геометрии
История происхождения, распространения оригами. Применение техники оригами, исследование возможностей применения оригами для решения геометрических задач и доказательство теорем. Сравнительные итоги срезов по изучению теоремы, изучение свойств биссектрис.
- 2106. Ориентированные графы
Изучение основополагающих понятий теории графов: ориентированный граф и маршрут, орцепь, орцикл и сильная связность. Рассмотрение понятия эйлерова орграфа и доказание основной теоремы о таких графах. Анализ приложения орграфов к теории цепей Маркова.
Характеристика ориентированного графа, путь и длина пути в графе. Элементарный путь и контур. Полустепень исхода и полустепень захода вершины. Матрица смежности графа и матрица инциденций. Двухполюсная транспортная сеть и условия ее существования.
Асоціативна алгебра з нетривіальним ортогональним оператором. Опис операторів на однопороджених нільпотентних алгебрах скінченної розмірності над довільним полем. Позначення радикалу Джекобсона алгебри. Аналіз нескінченновимірної асоціативної алгебри.
Построение для различных приложений функций нескольких переменных алгебраического подхода к многочленам, формулы которых содержат символьные переменные. Примеры, демонстрирующие эффективность ортогональных разложений на группах корней из единицы.
Фигуры, обладающие симметрией, одной или несколькими осями симметрии. Центр симметрии фигуры. Соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости. Построение точки, симметричной данной.
- 2111. Осевая симметрия
Понятие и фундаментальные свойства осевой симметрии. Правила тождественного преобразования в пространстве относительно неподвижной прямой. Движение первого рода как отображение плоскости на себя. Формула определения расстояния между двумя точками.
- 2112. Основи вищої математики
Основні поняття елементарної математики: алгебра, геометрія, тригонометрія. Елементи лінійної алгебри і аналітичної геометрії. Рішення систем лінійних однорідних рівнянь. Диференціальне числення функції однієї змінної. Поняття межі послідовності.
Елементи комбінаторики. Основні види з’єднань: розміщення, перестановки і сполучення. Випадкові події, імовірність подій: класичне визначення імовірності. Теореми додавання та множення ймовірностей. Формула повної імовірності. Формули Байєса та Бернуллі.
Границя послідовності та функції, принципи її визначення та головні характеристики. Властивості функцій, неперервних на відрізку, точки розриву та їх класифікація. Диференціальне числення функції однієї змінної, а також механізм визначення її похідних.
Побудова комплексного креслення моделі за аксонометрією. Написання букв, цифр і слів креслярським шрифтом. Читання і деталювання складальних креслень. Взаємний перетин циліндра з кулею. Аксонометрична проекція двох тіл обертання. Комплексне креслення.
Випробовування як наявність певного комплексу умов або дій, при яких спостерігається відповідне явище, подія як його можливий результат. Відносна частота та її стабільність. Аксіоматична побудова теорії ймовірності, аналогії між подіями та множинами.
Основні поняття теорії ймовірностей. Види випадкових подій. Статистичне означення ймовірності. Найпростіші теореми теорії ймовірностей. Закон Пуасcона або закон рідкісних подій. Математичне сподівання та характеристики дискретної випадкової величини.
Методика застосування цілісної теорії нелінійних різницевих рівнянь з неперервним аргументом для моделювання явищ самоорганізації та детермінованого хаосу. Оцінка асимптотичної динаміки недисипативних систем на некомпактних функціональних просторах.
Аналіз асимптотичної динаміки недисипативних систем на некомпактних функціональних просторах. Основи якісної теорії нелінійних різницевих рівнянь з неперервним часом. Просторово-часовий хаос в розподілених системах з регулярною динамікою на атракторі.
Особливість формулювання основної властивості відношення. Розв’язок задачі на застосування означення та атрибути пропорції. Головна характеристика крайніх та середніх членів рівності двох відношень. Дослідження правильної та неправильної пропорції.
Характеристика основной теоремы арифметики и ее роли. Рассмотрение различных колец, в которых она выполняется. Идея изучения математических объектов путем факторизации (разбиения) их на более простые математические объекты. Решение диофантовых уравнений.
Визначення та властивості ліній кривини. Їх геометричні властивості. Асимптотичні лінії і повна кривина поверхні. Основні умови збігу сітки координатних ліній на поверхні з сіткою ліній кривини. Задачі на знаходження асимптотичних ліній поверхні.
Застосування методів аналітичної геометрії, векторної алгебри, тригонометрії. Застосування геометричних співвідношень до доведення нерівностей. Визначення нерівності трикутника. Застосування векторів та похідної. Дослідження екстремальних властивостей.
Основні підходи до визначення стійкості криптографічних систем і протоколів у теоретичній криптографії. Забезпечення механізмів класифікації обчислювальних задач як головна мета теорії складності. Криптосистема з відкритим ключем, генерування ключа.
Классическая схема случаев - испытание, где число элементарных исходов конечно, и все они несовместны и равновозможны. Правила суммы, произведения. Характеристика схемы испытаний Бернулли, интегральной теоремы Муавра-Лапласа, схемы Пуассона, цепи Маркова.
Линейные и квадратные уравнения, содержащие параметр, их типы и методики разрешения. Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным. Иррациональные, логарифмические и показательные уравнения, содержащие параметр, их описание.
Классическая формула сложения вероятностей, геометрические вероятности. Формула Байеса и схема Бернулли. Закон распределения случайной величины. Ковариация и коэффициент корреляции, функция распределения и функция плотности непрерывной случайной величины.
История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.
Исследование действия законов Ома и Кирхгофа для электрических цепей. Рассмотрение расчетов линейных электрических цепей в установившемся режиме символическим методом. Определение частотных и временных характеристик линейных электрических цепей.
Графики некоторых элементарных функций. Аналитическая геометрия на плоскости. Дифференциальное исчисление функций одной переменной. Понятие о векторах и скалярах. Векторная алгебра. Физические основы механики. Реальные газы, жидкости и твердые тела.