Одномерные дискретные модели уравнения Больцмана для смесей. Инварианты и дискретизация кинетических равенств. Вариационный принцип для уравнения Лиувилля. Аппроксимация интеграла столкновений одномерной системы Больцмана для смесей дискретной моделью.
Знакомство с основными особенностями и проблемами автоматизированной цифровой обработки многоканальных изображений. Общая характеристика инвариантного симплекса, который отвечает RGB-изображению. Рассмотрение способов отыскания снимков по образцу.
- 1773. Инверсия
Понятие инверсии как сложного преобразования геометрических фигур, ее координатные формулы. Построение образа точки, прямой и окружности при инверсии. Свойства углов и расстояний при инверсии. Применение инверсии при решении задач на построение.
- 1774. Инверсия на плоскости
Понятие инверсии плоскости. Аналитическое выражение инверсии. Образы прямых и окружностей, инвариантные окружности, свойства углов и расстояний при инверсии. Инверсия и гомотетия. Применение инверсии при решении задач на построение и на доказательство.
Игры и индексы влияния, зависящие от предпочтений участников. Избранные аксиоматики для классических индексов влияния. Аксиоматики для индексов влияния в случае голосования с квотой. Алгоритмы и комплекс программ для вычисления индексов влияния.
- 1776. Индукция и комбинаторика
Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
- 1777. Инженерная графика
Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.
- 1778. Инженерная графика
Общие правила нанесения размерных чисел на чертежах. Разрез как изображение предмета, мысленно рассеченного одной или несколькими секущими плоскостями. Случаи и признаки разрезов. Основное понятие выносного элемента, вынесенного и наложенного сечения.
Общие правила оформления чертежей. Форматы, основная надпись, масштабы, линии, шрифты чертежные, брошюровка альбома. Сопряжения и изображения, разрезы, сечения. Основные требования к нанесению размеров. Условности и упрощения при задании форм изделий.
Определение оптимального плана выпуска малахитовых и агатовых брошей. Математическая модель задачи, построение области допустимых решений задачи. Решение задачи на нахождение максимума целевой функции. Вероятность попадания в мишень для первого стрелка.
Математические модели контроля качества, используемые при проведении контроля качества по шкалам порядка и интервалов. Сущность инструментального метода контроля качества. Диаграмма Исикавы (причинно-следственная диаграмма), диаграмма принятия решений.
Определение и характерные свойства интеграла, история развития соответствующего исчисления. Криволинейная трапеция, методика ее построения и анализа. Свойства определенного интеграла, направления его применения. Исследование набора стандартных картинок.
- 1783. Интеграл движения
Понятие интеграла движения. Независимые интегралы движения для замкнутой системы. Асимптотическая аддитивность интегралов движения. Формулировка, доказательство теоремы Нётер. Некоторые замечания относительно теоремы Нётер. Сохранение аддитивной величины.
Понятие первообразной и особенности теоремы о ней. Неопределенный интеграл и его свойства. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование дробей и иррациональных выражений. Вычисление площадей плоских фигур.
История интегрального исчисления и вопросы интегрального исчисления. Вклад физики в науку интегрального исчисления. Дифференциальное и интегральное исчисление и его применение. Определение, свойства интеграла. Криволинейная трапеция, стандартные картинки.
История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
- 1788. Интеграл и его свойства
Первообразная функция, теорема о первообразных. Неопределенный интеграл, свойства, таблица. Замена переменной, интегрирование по частям. Интегрирование дробей, выражений, содержащих тригонометрические функции. Определенный интеграл, геометрический смысл.
- 1789. Интеграл Лебега
Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.
- 1790. Интеграл Лебега
Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
- 1791. Интеграл Лебега
Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.
Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.
Получение оценок снизу модулей линейных форм с целыми коэффициентами от значений аналитических функций. Установление ряда оценок мер иррациональности значений действительного переменного. Разработка новой интегральной конструкции Р. Марковеккио.
Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.
Свойства интеграла от функции комплексной переменной. Вывод формулы Коши. Разложение функции в ряды. Классификация изолированных особых точек, теорема о вычетах. Операционное исчисление и его приложения. Связь между преобразованиями Фурье и Лапласа.
- 1796. Интегралы
Понятие первообразной функции. Теорема о первообразных. Неопределенный интеграл, его свойства. Таблица неопределенных интегралов. Замена переменной и интегрирование по частям в неопределенном интеграле. Разложение дробной рациональной функции на дроби.
Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.
Рассмотрение особенностей развития математического анализа и его роли в современной науке. Перекрестный и сравнительный анализ влияния технологий и факторов роста в образовании на развитие математического анализа. Решение уравнений в частных производных.
Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.
Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
