• Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация (140,7 K)
  • Нахождение обратной матрицы. Исследование системы линейных алгебраических уравнений на совместность. Нахождение координат вектора в заданном базисе. Метод элементарных преобразований и окаймляющих миноров. Способы нахождения ранга расширенной матрицы.

    контрольная работа (445,9 K)
  • Рассмотрение метода Дайсона в общем виде. Главная особенность использования троичной системы счисления. Характеристика алгоритма решения для случая. Обоснование оптимальности метода Дайсона. Основной анализ определения фальшивой монеты и ее типа.

    презентация (635,4 K)
  • Особенности и описание разработки модели для визуализации трехмерных изображений, её возможные недостатки. Использование моделирования мягких или органических объектов, трехмерного морфинга, обнаружения столкновений и конструктивной твердой геометрии.

    статья (311,5 K)
  • Розвиток методу інваріантних многовидів, його застосування для якісного і біфуркаційного аналізу деяких класів параболічних, функціонально-диференціальних і диференціально-різницевих рівнянь. Дослідження динаміки дисипативних структур і явищу буферності.

    автореферат (115,8 K)
  • Використання методу ітерації для розв'язання систем нелінійних рівнянь. Зміни послідовного наближення x при різних варіантах взаємного розташування графіка і прямої. Положення ітерації при різних значеннях функції та похідної. Умови зациклювання ітерацій.

    лекция (144,2 K)
  • Решение дифференциального уравнения, описывающего распространение тепла в области со сложной геометрией. Использование метода конечных элементов. Алгоритмы построения матрицы жесткости, задание граничных условий. Координаты в 3-х мерном пространстве.

    контрольная работа (48,8 K)
  • Сферы применения методов математического моделирования. Широкое применение метода конечных элементов, его основные положения и преимущества. Расчет на компьютере с помощью программы Ansoft Maxwell магнитных полей в спинволновых ферритовых системах.

    реферат (615,2 K)
  • Описание метода координат и способов его применения на примере конкретных математических задач. Выделение умений, необходимых для успешного овладения методом координат и подбор задач, формирующих данные умения. Этапы решения задач методом координат.

    дипломная работа (2,2 M)
  • Характеристика особенностей построения Декартовой прямоугольной системы координат (на плоскости, в пространстве). Графическое решение систем алгебраических линейных уравнений и задач линейного программирования с помощью Декартовой прямоугольной системы.

    курсовая работа (1,6 M)
  • Методика поиска точки глобального минимума на отрезке, где функция удовлетворяет условию Липшица на этом отрезке. Описание алгоритма метода ломаных и анализ полученных результатов. Свойства соответствующего семейства. Вычисление константы Липшица.

    контрольная работа (269,9 K)
  • Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.

    реферат (152,3 K)
  • Математическая индукция как способ математического доказательства, роль индуктивных выводов в экспериментальных науках. Интерпретация данных в зависимости от выбранной аксиоматики. Полная и неполная индукция, их применение для доказательства теорем.

    реферат (29,7 K)
  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат (79,3 K)
  • Индуктивный и дедуктивный методы рассуждений в основе математического исследования. Понятия полной и неполной индукции. Области применения, метод и принцип математической индукции. Решение примеров, доказательства равенств, неравенств, деления чисел.

    реферат (16,7 K)
  • Розгляд прикладної спрямованості дисципліни "математика". Побудова математичних моделей до задач економічного змісту як важливий засіб розвитку прикладної спрямованості навчання математики у школі. Структурно-логічна схема побудови математичної моделі.

    статья (164,9 K)
  • Метод межлабораторного сравнения для контролирующих организаций, в котором была применена звездообразная маршрутная схема эталонов массы. Определение референтного значения эталона массы в пилотной лаборатории и в лабораториях-участницах, анализ данных.

    статья (604,2 K)
  • Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.

    курсовая работа (393,0 K)
  • Описание математической модели, представляющей собой описание какого-либо объекта или процесса, выполненное на математическом языке с помощью геометрических фигур, уравнений, соотношений. Метод моделирования на уроках математики, его компоненты.

    статья (16,5 K)
  • Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.

    статья (274,1 K)
  • Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.

    доклад (28,0 K)
  • Преимущества, характеристика и специфика метода Монте-Карло, его применение в нанотехнологиях и в вычислении интегралов. Способ усреднения подынтегральной функции, оценка погрешности метода Монте-Карло и решение интегральных уравнений второго рода.

    курсовая работа (123,5 K)
  • Метод моделирования случайных величин с целью вычисления характеристик распределений. Влияние метода Монте-Карлона на развитие методов вычислительной математики. Математическое ожидание, дисперсия, точность оценки, доверительная вероятность и интервал.

    курсовая работа (133,5 K)
  • Метод Монте-Карло, вычисления интегралов, решения систем алгебраических уравнений высокого порядка, исследования различного рода сложных систем. Обычный алгоритм Монте-Карло интегрирования, моделирование поведения элементарных частей физической системы.

    доклад (430,6 K)
  • Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.

    курсовая работа (178,2 K)
  • Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.

    контрольная работа (130,5 K)
  • Решение интегральных уравнений методом наибыстрейшего спуска. Теорема о минимуме квадратичного функционала и ее следствие. Разработка алгоритма приближенного решения обыкновенного интегрального уравнения. Постановка задачи, численная реализация на ЭВМ.

    курсовая работа (1,2 M)
  • Состав системы уравнений для определения коэффициентов многочленов наилучшего среднеквадратичного приближения. Таблица значений многочленов наилучшего среднеквадратичного приближения. Графики аппроксимируемой функции, заданной на дискретном множестве.

    лабораторная работа (415,2 K)
  • Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.

    контрольная работа (382,9 K)
  • Основные понятия эконометрики. Виды и типы данных, используемых в эконометрических исследованиях. Применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии.

    контрольная работа (64,0 K)