• Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.

    курс лекций (11,9 M)
  • Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.

    учебное пособие (1,8 M)
  • Поширення теорії гладкостей Дітзіана-Тотіка на множини комплексної площини з кусково-гладкою межею. Вивчення властивостей аналога DT-модуля гладкості на областях з кутами. Побудова конструктивної характеристики в термінах D-модуля гладкості функції.

    статья (363,1 K)
  • Розробка геометричного алгоритму формування точкових каркасів квазіканалових поверхонь. Дослідження точності дискретного представлення плоских кривих із заданими диференціально-геометричними характеристиками і збіжності алгоритмів їх формування.

    автореферат (64,4 K)
  • Построение х-карты средних и r-карты размахов. Контрольные карты при известных и неизвестных значениях среднего показателя и стандартного отклонения процесса. Расчет границ для карты средних значений процесса. Размах выборки в оценке вариабельности.

    лабораторная работа (608,9 K)
  • Множина, диференційне, інтегральне числення та ряди в математичному аналізі. Контрприклад – факт, що спростовує певне твердження, ілюструє його хибність. Розгляд та пояснення контрприкладів до правил та теорем математичного аналізу. Заперечення гіпотез.

    курсовая работа (207,0 K)
  • Конус - геометрическое тело, состоящее из круга (основания), точки, не лежащей в плоскости этого круга (вершины) и всех отрезков, соединяющих вершину с точками основания. Определение площади поверхности конуса и его объема. Понятие касательной плоскости.

    презентация (227,8 K)
  • Понятие конформных отображений, их осуществление через элементарные функции. Основные принципы теории конформных отображений об отображении одной заданной области на другую. Принципы непрерывности и симметрии. Конформность дифференцируемого отображения.

    курсовая работа (2,5 M)
  • Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.

    курсовая работа (254,1 K)
  • Геометрический смысл производной функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Общие свойства конформных отображений. Линейная, дробно-линейная, степенная функция. Понятие римановой поверхности. Функция Жуковского.

    курсовая работа (252,1 K)
  • В работе предлагается развитие современной теории безопасности сложных систем и расширение области ее применения на класс критических инфраструктур. Исследования системных связей и закономерностей, определяющих жизнеспособность критических инфраструктур.

    статья (414,6 K)
  • Основные понятия математического моделирования, простейшие модели. Иерархический подход к получению моделей. Получение моделей из закона сохранения вещества и закона сохранения энергии. Модели трудноформализуемых объектов. Применение методов подобия.

    учебное пособие (78,6 M)
  • Доведення прямих теорем (оцінок типу Джексона) у випадках знакозберігаючого та коопуклого наближення періодичних функцій тригонометричними поліномами з використанням методів теорії апроксимації. Побудова деяких контрприкладів для цих видів наближень.

    автореферат (46,2 K)
  • Характерні властивості функцій першого класу Бера, зв’язок між морановими і наміоковими просторами. Умови залежності від певної кількості координат нарізно неперервних функцій двох сукупних змінних. Рівняння з частинними похідними при мінімальних вимогах.

    автореферат (70,5 K)
  • Метод "частичных" областей для решения уравнений с параметрами. Показательные и логарифмические уравнения и неравенства с параметрами. Освоение методов решения вычислительных и логических задач. Поиск решения линейных и квадратных уравнений в общем виде.

    дипломная работа (2,7 M)
  • Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.

    автореферат (90,6 K)
  • Случайное явление при неоднократном воспроизведении одного и того же опыта протекает по-разному. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, но можно описать закон распределения.

    реферат (34,0 K)
  • Розвиток математичних засобів виявлення ознак зображень, інваріантних до широкого класу перетворень і придатних для паралельної реалізації. Дискретна інтерпретація відповідних формул і розпаралелювання одержаних алгоритмів. Розробка програмного комплексу.

    автореферат (377,3 K)
  • Значение арифметического, вещественного и алгебраического корней в математике. Извлечение корня и возведение в дробную степень, в рациональную степень отрицательных чисел. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника.

    научная работа (408,9 K)
  • История развития и современное понимание статистики. Характеристика видов причинно-следственных связей. Статистическое моделирование связи методом корреляционного и регрессионного анализа на примере взаимосвязи капитала и работающих активов 32 банков.

    курсовая работа (75,6 K)
  • Этапы проведения корреляционного и регрессионного анализа с целью выявления зависимости объема работ от числа рабочих. Анализ и понятие полного факторного эксперимента, его преимущества. Особенности проведения эксперимента, получение уравнения регрессии.

    контрольная работа (302,6 K)
  • Уравнение парной регрессии. Система нормальных уравнений. Параметры уравнения регрессии. Показатель тесноты связи. Коэффициент эластичности. Ошибка аппроксимации и индекс корреляции. Поиск тесноты связи с помощью множественного коэффициента корреляции.

    контрольная работа (15,2 K)
  • Функциональная и статистическая зависимость между величинами: сущность и особенности. Примеры корреляционных связей и полей. Методы определения формы и направления связи, измерение степени ее тесноты. Корреляционная матрица и ее основные свойства.

    реферат (313,6 K)
  • Принципы и закономерности реализации корреляционного анализа. Методика и основные этапы вычисления корреляционных коэффициентов: теоретических, выборочных. Статистика Стьюдента (Нуль-гипотеза). Коэффициент ранговой корреляции Спирмена и Кэндалла.

    лабораторная работа (51,4 K)
  • Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.

    контрольная работа (439,0 K)
  • Критические значения коэффициента парной корреляции. Планирование многофакторного эксперимента. Проверка однородности дисперсии и равноточности измерения в разных сериях. Показатели уравнения регрессии. Методы рациональной организации исследований.

    курсовая работа (461,5 K)
  • Смысл корреляционного анализа. Ковариация как мера для выражения степени соответствия между наборами данных. Коэффициент Пирсона. Оценка валидности задания. Точечно-бисеральный коэффициент корреляции. Тестологическая интерпретация. Дистракторный анализ.

    лекция (99,5 K)
  • Определение зависимости между переменными величинами в совокупностях. Интерпретация и способы вычисления коэффициента корреляции. Оценка значения парных произведений центральных отклонений. Расчет минимального числа наблюдений для планируемой точности.

    презентация (476,9 K)
  • Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.

    статья (1,6 M)
  • Вибрато и агогика - одни из основных видов амплитудно-частотной модуляции звуковых колебаний, которые присущи голосу певца в спектре акустического сигнала. Специфические особенности использования автокорреляционной функции для анализа вокальной речи.

    статья (611,1 K)