Корень n-й степени и его применение в математике

Значение арифметического, вещественного и алгебраического корней в математике. Извлечение корня и возведение в дробную степень, в рациональную степень отрицательных чисел. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 13.11.2013
Размер файла 408,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Научно-практическая работа

по математике

по теме: «Корень n-й степени и его применение в математике»

Подготовили

Желтко Алина и

Свистун Елена

Корень -й степени из числа определяется как такое число , что Здесь -- натуральное число, называемое показателем корня (или степенью корня); как правило, оно больше или равно 2, потому что случай тривиален.

Обозначение: символ (знак корня) в правой части называется радикалом. Число (подкоренное выражение) чаще всего вещественное или комплексное.

Примеры для вещественных чисел:

· потому что

· потому что

· потому что

Как видно из первого примера, у вещественного корня могут быть два значения (положительное и отрицательное), и это затрудняет работу с корнями. Чтобы обеспечить однозначность, вводится понятие арифметического корня, значение которого всегда неотрицательно, в первом примере это число

Определение и связанные понятия

Кроме приведенного выше, можно дать два равносильных определения корня:

· Корень -й степени из числа есть решение уравнения (отметим, что решений может быть несколько или ни одного)

· Корень -й степени из числа есть корень многочлена то есть значение , при котором указанный многочлен равен нулю.

Операция вычисления называется «извлечением корня -й степени» из числа . Это одна из двух операций, обратных по отношению к возведению в степень, а именно -- нахождение основания степени по известному показателю и результату возведения в степень . Вторая обратная операция, логарифмирование, находит показатель степени по известным основанию и результату. Корни второй и третьей степени употребляются особенно часто и поэтому имеют специальные названия.

· Квадратный корень: В этом случае показатель степени 2 обычно опускается, а термин «корень» без указания степени чаще всего подразумевает квадратный корень. Геометрически можно истолковать как длину стороны квадрата, площадь которого равна .

· Кубический корень: Геометрически -- это длина ребра куба, объём которого равен .

Корни из вещественных чисел

Корень -й степени из вещественного числа , в зависимости от чётности и знака , может иметь от 0 до 2 вещественных значений.

Общие свойства:

· Корень нечётной степени из положительного числа -- положительное число, однозначно определенное.

, где -- нечётное

Например,

· Корень нечётной степени из отрицательного числа -- отрицательное число, однозначно определенное.

, где -- нечётное

Например,

· Корень чётной степени из положительного числа имеет два значения с противоположными знаками, но равными по модулю.

, где -- чётное

Например,

· Корень чётной степени из отрицательного числа не существует в области вещественных чисел, поскольку при возведении любого вещественного числа в степень с чётным показателем результатом будет неотрицательное число. Ниже будет показано, как извлекать такие корни в более широкой системе -- множестве комплексных чисел (тогда значениями корня будут комплексных чисел).

не существует, если -- чётное

· Корень любой натуральной степени из нуля -- нуль.

где

Корни чётной степени определены, вообще говоря, неоднозначно, и этот факт создаёт неудобства при их использовании. Поэтому было введено практически важное ограничение этого понятия.

Арифметический корень -й степени из неотрицательного вещественного числа -- это такое неотрицательное число , что Обозначается арифметический корень тем же знаком радикала.

Таким образом, арифметический корень, в отличие от ранее определённого (алгебраического), определяется только для неотрицательных вещественных чисел, а его значение всегда существует, однозначно и неотрицательно. Например, квадратный корень из числа имеет два значения: и , из них арифметическим является первое.

Поскольку арифметический корень и алгебраический обозначаются одним и тем же символом, но являются разными объектами, в рамках данной статьи арифметический корень обозначается синим цветом, а алгебраический -- чёрным.

Приведённые ниже формулы верны, прежде всего, для арифметических корней любой степени, что подчёркивается выделением знака радикала синим цветом (кроме особо оговоренных случаев). Они справедливы также для корней нечётной степени, у которых допускаются и отрицательные подкоренные выражения.

· Взаимопогашение корня и степени -- для нечётного : , для чётного :

· Если , то и

Корень из произведения равен произведению корней из сомножителей:

Аналогично для деления:

Следующее равенство есть определение возведения в дробную степень:

Величина корня не изменится, если его показатель и степень подкоренного выражения разделить на их общий множитель:

Пример:

Для корней нечётной степени укажем дополнительное свойство:

Операция возведения в степень первоначально была введена как сокращённая запись операции умножения натуральных чисел: ( раз). Следующим шагом было определение возведения в произвольную целую, в том числе отрицательную, степень:

Операция извлечения арифметического корня позволяет определить возведение положительного числа в любую рациональную (дробную) степень:

При этом числитель дроби может иметь знак. Свойства расширенной операции в основном аналогичны возведению в целую степень.

Это определение означает, что извлечение корня и обратное к нему возведение в степень фактически объединяются в одну алгебраическую операцию. В частности:

Попытки возведения в рациональную степень отрицательных чисел могут привести к ошибкам, поскольку значение алгебраического корня неоднозначно, а область значений арифметического корня ограничена неотрицательными числами. Пример возможной ошибки:

Графики функций корня

Функции корня и обратные к ним степенные функции на интервале [0;1]

Функции корня: -- арифметический, чётные степени 2, 4, 6 -- общий, нечётные степени 3, 5, 7

Если рассматривать подкоренное выражение как переменную, мы получим функцию корня -й степени: . Функция корня относится к категории алгебраических функций. График любой функции корня проходит через начало координат и точку .

Как сказано выше, для корня чётной степени, чтобы обеспечить однозначность функции, корень должен быть арифметическим, так что аргумент неотрицателен. Функция корня нечётной степени однозначна и существует для любого вещественного значения аргумента.

Тип функции корня

Область определения

Область значений

Другие свойства

Чётной степени

Функция выпукла вверх на всей области определения

Нечётной степени

Функция нечётна

корень математика арифметический степень

Первые задачи, связанные с извлечением квадратного корня, обнаружены в трудах вавилонских математиков (о достижениях древнего Египта в этом отношении ничего не известно). Среди таких задач:

* Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника по известным двум другим сторонам.

* Нахождение стороны квадрата, площадь которого задана.

* Решение квадратных уравнений.

Вавилонские математики (II тысячелетие до н.э.) разработали для извлечения квадратного корня особый численный метод. Начальное приближение для рассчитывалось исходя из ближайшего к корню (в меньшую сторону) натурального числа . Представив подкоренное выражение в виде: , получаем: , затем применялся итеративный процесс уточнения, соответствующий методу Ньютона:

Итерации в этом методе очень быстро сходятся. Для , например, и мы получаем последовательность приближений:

В заключительном значении верны все цифры, кроме последней.

Аналогичные задачи и методы встречаются в древнекитайской «Математике в девяти книгах». Древние греки сделали важное открытие: -- иррациональное число. Детальное исследование, выполненное Теэтетом Афинским (IV век до н. э.), показало, что если корень из натурального числа не извлекается нацело, то его значение иррационально.

Греки сформулировали проблему удвоения куба, которая сводилась к построению кубического корня с помощью циркуля и линейки. Проблема оказалась неразрешимой. Численные алгоритмы извлечения кубического корня опубликовали Герон (в трактате «Метрика», I век н. э.) и индийский математик Ариабхата I (V век).

Алгоритмы извлечения корней любой степени из целого числа, разработанные индийскими и исламскими математиками, были усовершенствованы в средневековой Европе. Николай Орем (XIV век) впервые истолковал корень -й степени как возведение в степень .

После появления формулы Кардано (XVI век) началось применение в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел. Основы техники работы с комплексными числами разработал в XVI веке Рафаэль Бомбелли, который также предложил оригинальный метод вычисления корней (с помощью цепных дробей). Открытие формулы Муавра (1707) показало, что извлечение корня любой степени из комплексного числа всегда возможно и не приводит к новому типу чисел.

Комплексные корни произвольной степени в начале XIX века глубоко исследовал Гаусс, хотя первые результаты принадлежат Эйлеру. Чрезвычайно важным открытием (Галуа) стало доказательство того факта, что не все алгебраические числа (корни многочленов) могут быть получены из натуральных с помощью четырёх действий арифметики и извлечения корня.

Термин корень имеет долгую и сложную историю. Извлечение квадратного корня древние греки понимали строго геометрически: как нахождение стороны квадрата по известной его площади. После перевода на санскрит греческое слово «сторона» превратилась в «мула» (основание). Слово «мула» имело также значение «корень», поэтому при переводе индийских сиддхант на арабский использовался термин «джизр» (корень растения). Впоследствии аналогичное по смыслу слово «radix» закрепилось в латинских переводах с арабского, а через них и в русской математической терминологии («корень», «радикал»).

Средневековые математики (например, Кардано) обозначали квадратный корень символом Rx, сокращение от слова «radix». Современное обозначение впервые употребил немецкий математик Кристоф Рудольф, из школы коссистов (то есть алгебраистов), в 1525 году. Происходит этот символ от стилизованной первой буквы того же слова «radix». Черта над подкоренным выражением вначале отсутствовала; её позже ввёл Декарт (1637) для иной цели (вместо скобок), и эта черта вскоре слилась со знаком корня. Показатель степени появился в знаке корня благодаря Валлису и «Универсальной арифметике» Ньютона (XVIII век).

Размещено на Allbest.ru


Подобные документы

  • Извлечение квадратного корня - операция нахождения квадратного корня из неотрицательного числа. Сравнительный анализ способов приближенного извлечения квадратных корней. Характеристика арифметического способа. Вавилонский способ (первый метод Герона).

    реферат [48,7 K], добавлен 15.05.2012

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация [174,3 K], добавлен 18.12.2012

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация [11,6 M], добавлен 04.04.2019

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация [376,2 K], добавлен 28.02.2012

  • Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.

    контрольная работа [27,8 K], добавлен 24.12.2010

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа [47,7 K], добавлен 05.05.2010

  • Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.

    презентация [94,6 K], добавлен 08.11.2011

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.

    реферат [132,1 K], добавлен 05.01.2010

  • Базовые основы системы mn параметров, варианты их значений. Теоремы циклов для треугольников и прямоугольного треугольника. Тайна теоремы Пифагора, предистория ее рождения. Итерационные формулы и их использование. Дисперсия точек ожидаемой функции.

    статья [241,5 K], добавлен 24.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.