Биографический очерк о жизни, научной, педагогической и общественной деятельности российского математика И.Г. Петровского, автора современной теории дифференциальных уравнений. Анализ основных направлений его исследований в области математики и механики.
Основные биографические данные из жизни известного математика И.Г. Петровского. Оценка научных заслуг и педагогического таланта ученого, его стратегии курса на фундаментализацию университетского образования. Работа И.Г. Петровского на посту ректора МГУ.
- 1593. Математика
История возникновения математики. Краткие биографии великих древнегреческих и французских ученых, философов, мыслителей и математиков (Евклида, Пифагора, Архимеда, Виета, Фалеса). Их основные открытия. Высказывания некоторых великих личностей о науке.
- 1594. Математика
Определение производных первого порядка. Порядок решения системы уравнений методом Крамера. Построение графика функции, используя исследования функции y = x3–2,5x2–2x+1,5. Поиск неопределенных интегралов. Определение координат векторов АВ, ВС, СА.
- 1595. Математика
Изложение приёмов исследования и решения математически сформулированных задач; математического моделирования для исследования сложных экономических систем, построения надёжных моделей экономических процессов с целью обоснования принимаемых решений.
Взаимосвязь истории и математики. Вклад в развитие математических наук С.Л. Соболева, Н.И. Лобачевского, Н.Е. Жуковского и других русских ученых. Задачи из работ Эйлера и "Арифметики" Магницкого. Проверка знаний школьников с помощью конкурса и ребусов.
Рассмотрение математики в античной Греции. Построение греками математики как целостной науки с собственной методологией, основанной на чётко сформулированных законах логики. Провозглашение о постижимости законов природы для человеческого разума.
Математика – одна из древнейших, важнейших и сложнейших компонентов человеческой культуры. Деятельность ученых-математиков Древней Греции: Пифагора, Евклида, Фалеса из Милета, Эратосфена Киренского. Взгляд на математику как на науку сквозь туман старины.
Периоды развития математики в Китае и наиболее яркие открытия китайских учёных. Структура и рассматриваемые научные вопросы математических сочинений, входящих в сборник в "Десятикнижье". Техника вычислений, методы алгебры и геометрии в Древнем Китае.
История рождения теории отношения и геометрической математики. Появление аксиомы Архимеда в древней Греции, задач на пропорции, линейные и квадратные уравнения, дроби. Развитие математики в Древнем Востоке, Китае и Индии. Создание системы счисления.
Значение и методы интеграции математики в естествознании. Специфика применения математики в химии, биологии, физике, астрономии, географии и экологии. Понятие точности и математических знаков, роль арифметического счета и геометрических измерений.
Цель изучения математики: повышение общего кругозора, культуры мышления, формирование научного мировоззрения. Два вида умозаключений: дедукция и индукция. Основные закономерности построения сходных по форме логических связей в математическом мышлении.
- 1603. Математика в истории
Рассмотрение математической науки как науки о структурах, порядке исчисления. История возникновения операций подсчёта, измерения и описания форм реальных объектов. Дедуктивный характер греческой математики. Формирование теории Пифагора в геометрии.
Рассмотрение способа измерения высоких предметов в романе Жюля Верна "Таинственный остров". Исследование особенностей применения геометрии в произведении Джонатана Свифта. Ознакомление с ошибкой в математических рассуждениях в романе Джека Лондона.
- 1605. Математика в медицине
Особенности и направления использования математических методов в современной медицине. Моделирование как один из главных методов, позволяющих ускорить технический процесс, сократить сроки освоения новых процессов. Другие сферы применения математики.
- 1606. Математика в медицине
Специфика применения математических методов в медицине. Особенности условий для достоверного составления необходимой модели. Характеристика математических моделей, их значение, критерии и проверка справедливости. Анализ их достоинств и недостатков.
- 1607. Математика в нашей жизни
Характеристика основных высказываний известных людей о науке, которая изучает величины. Главная особенность применения математики в медицине, пекарне, торговле, строительстве и в быту. Использование чисел в пословицах, поговорках и сочинениях учащихся.
- 1608. Математика в нашей жизни
Применение математических знаний во всех отраслях человеческой деятельности: в промышленности, архитектуре, медицине, астрономии, программировании, геодезии, быту и технике. Математическое моделирование как основа создания архитектурных моделей.
Элементы линейной алгебры и аналитической геометрии. Дифференциальное исчисление функции одной и нескольких переменных. Комплексные числа, уравнения математической физики. Элементы теории вероятностей и математической статистики, дискретная математика.
Использование математической науки в профессиональной деятельности повара. Цилиндр - тело, состоящее из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.
- 1611. Математика в профессиях
Изучение необходимости применения математической науки в жизни человека. Основные правила в геометрии стрижек. Математика в парикмахерском деле. Выбор бигуди в зависимости от толщины радиуса для моделирования прически. Симметрия и асимметрия в стрижках.
Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.
Прикладная математика, процесс математического моделирования. Абсолютная и относительная погрешность приближения и ее граница. Проценты. Нахождение процентов от числа, числа по ее процентам, процентного отношения двух чисел. Решение квадратных уравнений.
Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.
Математика как наука о количественных отношениях и пространственных формах действительного мира. История ее развития от древних времен до наших дней: содержание и расширение предмета, универсальность и применение. Гениальные математические открытия.
Фибоначчи и его числовая последовательность. Оценка реакции человека на правильные геометрические формы в окружающей природе и в объектах искусства. Торговля на рынке форекс. Расчет уровня отката и отскока тренда. Изучение волновой теории Элиота.
Способ анализа дискретных цифровых последовательностей. Передаточная характеристика аналогового фильтра. Образы по Лапласу для непрерывного и дискретного сигналов. Бесконечные периодические повторения нулей и полюсов. Вход и выход динамической системы.
- 1618. Математика ЕГЭ
Свойства делимости целых чисел. Сущность канонического разложения. Факториал, сумма делений натурального числа. Характеристика алгоритма Евклида. Основные факторы делимости и восстановление цифр. Понятие малой теоремы Ферма. Целые рациональные выражения.
- 1619. Математика и биология
Значение математики в биологии. Математические методы и статистическая совокупность. Дискретная случайная величина и законы ее распределения. Статистическое оценивание и проверка статистических гипотез. Специфика регрессионного и кластерного анализа.
Роль математики в повседневной жизни и быту. Использование математики в химии, физике, экономике, бухгалтерии, информатике и программировании. Определение значения математики в формировании умений анализировать и моделировать различные ситуации.