Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.
Расчет временных характеристик чистового сетевого графика. Нахождение ранних и поздних сроков совершения событий. Определение критического времени пути. Построение графиков минимального покрывающего дерева. Составление таблицы результатов вычислений.
Рассмотрение особенностей проведения расчетов временных характеристик. Знакомство с задачами оптимизации на графах. Наиболее распространенные способы построения сетевого графика, анализ проблем. Характеристика полного графа с известными длинами ребер.
Площадь кругового сегмента, стянутого хордой. Длина гипотенузы, лежащей внутри окружности. Площадь фигуры, ограниченной сторонами угла и дугой окружности, заключенной между ними. Уравнение окружности, проходящей через точку и касающейся осей координат.
Вычисление задач несовмещенных оценок среднего значения. Поиск доверительного инетрвала для среднего значения дисперсии из стандартного отклонения. Вычисление несмещенных оценок. Решение задачь путем вычисления минимальной выборки.
Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.
Решение задач по теме теории вероятности с предоставлением необходимых формул. Результаты наблюдений над случайной величиной и примеры решения задачи на графике. Нахождение середины интервалов и вероятности с использованием таблицы и построением графика.
Понятие и классификация задач затрат, их разновидности и методика решения, исследование количественной части. Правила двойственного соответствия. Задачи выпуска и равновесия, их физическое содержание. Каноническая пара задач. Табличное представление.
- 1599. Задачи с нормальными производными в граничных условиях для нелинейных гиперболических уравнений
Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
Рассмотрение современных учебников алгебры и начал математического анализа 9 класса. Рассмотрение основных видов системы уравнений и неравенств, содержащих параметр. Характеристика аналитического и графического методов решения задач с параметрами.
Функционально-графические методы решения алгебраических задач с параметрами и модулем. Приемы выполнения изображения на плоскости и их использование в решении задач с параметрами и модулем. Линейные и квадратные уравнения. Графики элементарных функций.
Использование творческих задач при преподавании дисциплины "черчение". Педагогические методы и информационные технологии преподавания графических дисциплин в учебном заведении. Интеллектуально-личностное развитие учащихся в исследовательской деятельности.
Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
- 1604. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
Умови існування та єдиності розв'язків мішаних задач та задач без початкових умов для деяких типів еволюційних рівнянь та систем. Існування та єдиність розв'язків для нелінійних ультрапараболічних рівнянь в необмежених за просторовими змінними областях.
Встановлення існування та єдності узагальненого розв’язку задач для нелінійних рівнянь в анізотропних просторах без умов на нескінченності. Дослідження альтернативних випадків, при яких варіаційні нерівності є коректними в певних класах зростання.
Проведено математичне дослідження коректності задач для псевдопараболічних систем рівнянь та варіаційних нерівностей і властивостей розв’язків цих задач, за допомогою аналогу методу Гальоркіна, методів штрафу, регуляризації, монотонності та компактності.
Нелінійні еліптичні рівняння в необмежених областях, для яких задача Діріхле і Неймана мають єдиний загальний розв'язок без припущень на його поведінку і зростання вихідних даних на нескінченності за рахунок рівнянь зі змінними показниками нелінійності.
Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.
Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.
Вивчення задач з невідомими межами для гіперболічних систем квазілінійних рівнянь першого порядку щодо їхньої локальної й глобальної розв'язності. Рішення гіперболічної задачі Стефана з нелокальними крайовими умовами для системи квазілінійних рівнянь.
Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
Розв’язання задач з параметрами на прикладі лінійних, квадратних та графічних рівнянь. Вивчення механічного та геометричного змісту похідних та їх застосування у основних елементарних, обернених, складених функціях та логарифмічному диференціюванні.
Визначення основних умов коректної локальної та глобальної розв'язності задач з рухомими (відомими та невідомими) межами для гіперболічних систем квазілінійних рівнянь першого порядку. Дослідження особливого випадку областей з рухомими межами на площині.
Основні методи геометричних побудувань: геометричного місця точок, перетворення, алгебраїчний. Використання методів конструктивної геометрії для побудови геометричних фігур за допомогою лінійки, циркуля, подвійної лінійки, гострого та прямого кутів.
Характеристика екстраполяції ізотропних випадкових полів з певних класів в центрі сфери за спостереженнями на сфері. Оцінювання невідомого середнього значення для однорідних та ізотропних випадкових полів з певних класів, що спостерігаються на кулі.
Розгляд групи задач на знаходження чисел за їх відношенням. Формуванням цілісного уявлення про застосування схеми розв'язування текстових задач за допомогою рівнянь. Відпрацювання обчислювальних навичок. Особливості етапу позначення невідомого буквою.
Приклади розв’язування типових завдань для учнів 6 класу. Розв’язок задач за допомогою пропорцій. Визначення прямо пропорційних и обернено пропорційних величині і основні їхні відмінності. Розв'язок обернено пропорційних величин складанням пропорції.
Розв’язання задач на складання рівнянь, в яких кількість невідомих перевищує кількість рівнянь системи, які розв’язуються за допомогою нерівностей, з цілочисловими невідомими та в яких потрібно знаходити найбільші і найменші значення деяких виразів.
Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
