Особливість проведення дробно-факторного експерименту. Визначення генеруючого співвідношення, яке для кожної матриці планування показує, яка з взаємодій прийнята незначною і замінена новим фактором. Побудова таблиці проектування великої дробності.
Багатофакторні системи, що важко піддаються аналітичному опису. Чотирьохфакторний експеримент за однофакторною методикою. Скорочення числа дослідів за рахунок тієї інформації, що не істотна при побудові лінійних моделей, відстеження матриці планування.
Основные непрерывные распределения, которые используют в лесном деле. Типы преобразований, плотность распределения кривых семейства Джонсона. Распределение типа А или Грама-Шарлье. Аппроксимация экспериментального ряда числа стволов в антропогенных лесах.
Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
- 1475. Дуальные числа
Алгебра дуальных чисел. Операции сложения и вычитания для дуальных чисел. Разность параметров делимого и делителя. Основное свойство мультипликативности. Закон отображения области определения в область значений. Классическое определение дифференциала.
Содержательные основы концепции философии числа пифагорейцев. Стадии формирования математических учений Платона и Аристотеля. Определение числовой гармонии. Значение теоретических подходов к вещественности числа для философии математики Аристотеля.
- 1477. Евклид и его "Начала"
"Начала" - основная книга Эвклида, самый знаменитый учебник в истории. Расположение материала по тринадцати книгам так, чтобы трудности не возникали преждевременно (планиметрия, арифметика, несоизмеримые величины, стереометрия). Пятый постулат Эвклида.
- 1478. Евклидова геометрия
Геометрическая теория, основанная на системе аксиом, впервые изложенная в "Началах" математика Евклида (III век до н.э.). Аксиома как "фундамент" для построения доказательств утверждений или теорем. Научные исследования и педагогические заслуги Евклида.
- 1479. Евклидово пространство
Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.
Рассмотрение содержания арифметической теории квадратичных форм. Изучение основ теории билинейных и квадратичных форм. Линейные операции над векторами евклидова пространства. Неравенство Коши-Буняковского. Основные свойства квадратической формы.
Теоретические основы эвклидовости в математике. Кольца целостности. Евклидовы кольца. Матрицы над евклидовым кольцом. Линейные уравнения и системы линейных уравнений над кольцом целостности. Системы линейных уравнений над произвольным евклидовым кольцом.
Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.
Понятие кольца как непустого множества К с определенными на нем бинарным алгебраическими операциями сложения и умножения, требования к аксиомам. Разновидности кольца К и основные требования, предъявляемые к каждому из них, простейшие свойства и значение.
Побудування розв’язки задач Коші для нестаціонарних параболічних рівнянь із суттєво нескінченновимірними операторами в банаховому просторі функцій, заданих на нескінченновимірному сепарабельному гільбертовому просторі. Докази теорем та зауваження.
Характеристика умов наявностi властивостей iнерцiї та зменшення розмiрiв носiя. Вивчення стартовиго руху носiя розв’язку в залежностi вiд локальних властивостей початкової функцiї. Аналіз локалiзацiї та обмеженостi розв’язків задачі Коши-Неймана.
Визначення головних умов наявностi властивостей iнерцiї та зменшення розмiрiв носiя. Характеристика особлиовстей умов, якi гарантують наявнiсть локалiзацiї та обмеженостi розв’язків задачі Коши-Неймана для параболiчних рiвнянь загального вигляду.
Древнейшие древнеегипетские математические тексты. Папирус Ахмеса или папирус Ринда – наиболее объёмный манускрипт, содержащий 84 математические задачи. Фрагменты вычислительного характера. Древнеегипетская нумерация. Иероглифы для изображения чисел.
- 1488. Египетские дроби
Изучение египетских дробей, принятых в египетской системе счисления. Исследование способов представления чисел в древности. Преимущества и недостатки позиционных и непозиционных систем счисления. Рассмотрение содержания математических папирусов.
- 1489. Его величество граф
Граф в математике как картинка, где нарисовано несколько точек, некоторые из которых соединены линиями, принципы его построения, анализ. История возникновения графов и ученые, участвовавшие в разработке данной концепции. Задача о Кенигсбергских мостах.
- 1490. Его величество граф
Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.
- 1491. Ейлерові графи
Основні означення та властивості графів. Використання матриць інцилентності та суміжності для подання графі. Подання графа списками пар і суміжності. Розгляд ейлерової ломиголовки "Кенігзберзьких мостів". Алгоритм Флері побудови ейлерового циклу.
Застосування методів топологічної алгебри, теорії лінійних просторів до вивчення ізоморфізмів вільних топологічних та паратопологічних груп. Класифікація відображень, що мають праві обернені. Побудова еквівалентних за Марковим просторів і відображень.
Встановлення критерію топологічної еквівалентності функцій, що задані на колі та приймають скінченне число критичних значень. Визначення значення неперервних функцій в термiнах iнварiанта в їх локальних екстремумах, що утворюють змії певного типу.
Новий метод доведення, що заснований на порівнянні монотонних функцій із степеневими. Точні межі показників у вкладеннях класів Макенхаупта в класи Геринга й в обернених вкладеннях. Необхідні та достатні умови для монотонної зовнішньої функції.
- 1495. Екстремальні задачі і квадратичні диференціали в геометричній теорії функцій комплексної змінної
Розробка методики та ефективних прийомів розв'язання екстремальних задач для (n, m) – променевих систем точок. Поняття, відмінні особливості рівнопроменевих систем точок. Доведення гіпотези Дюрена для частинного випадку скінченних лінійних функціоналів.
Розв’язання локального варіанту проблеми Помпейю для деяких плоских множин, дослідження питання про те, чи є дана множина множиною Помпейю в крузі знайденого екстремального радіусу. Розгляд таких, границя яких складається з дуги кола та двох відрізків.
- 1497. Екстремальні задачі теорії наближення на класах нескінченно диференційованих періодичних функцій
Аналіз умов існування та єдиності інтерполяційних SK-сплайнів з рівномірним розподілом вузлів сплайнів та сталим зсувом вузлів інтерполяції. Вивчення асимптотично непокращуваних нерівностей типу Лебега на класах інтегралів Пуассона періодичних функцій.
Розв’язування екстремальних задач на знаходження максимуму функціоналів, які залежать від внутрішніх радіусів областей відносно точок комплексної площини та задач з вільними полюсами на одиничному колі у випадку трьох областей, які не перетинаються.
Методи знаходження визначників матриць при розв’язувані системи лінійних рівнянь матричним способом. Обчислення рангу оберненої матриці за допомогою елементарних перетворень. Використання елементарних перетворень для спрощення обчислення детермінанта.
Визначення виду формули за допомогою таблиці істинності. Основні елементи абстрактної алгебри. Фіктивні, значимі змінні для функцій. Розгляд таблиці Келі в дискретній математиці. Множини з алгебраїчними операціями. Рівняння групи з оберненими елементами.
