Понятие устойчивости автоматических систем и их представление в виде критерия для системы третьего порядка. Критерий устойчивости И.А. Вышнеградского. Зависимость простой квадратичной интегральной оценки качества от параметров автоматической системы.
Ключевые условия независимости Y от X для непрерывных случайных величин. Функциональная и вероятностная (стохастическая) зависимость в теории вероятностей. Изучение вероятностной зависимости на примере двух случайных величин – роста и веса человека.
Поняття та структура, класифікація та різновиди систем лінійних алгебраїчних рівнянь, їх відмінні особливості та характерні властивості. Сутність еквівалентних систем. Методика розв’язання даних рівнянь, використання теореми Кронекера-Капеллі та Гаусса.
Дослідження питання характеризації елемента найкращого наближення у просторах із змішаною інтегральною метрикою з вагою. Виведення загального виду лінійного обмеженого функціонала. Визначення критерію елементу найкращого наближення у зазначених просторах.
Дослідження властивостей монотонних функцій та арифметичних операцій над ними. Загальні відомості про парні і непарні відображення множини. Побудова графіків з використанням програми Advanced Grapher. Основна характеристика Т-періодичної функції.
Властивості розв'язків лінійного однорідного диференціального рівняння. Необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного диференціального рівняння n–го порядку. Фундаментальна система розв'язків диференціального рівняння.
- 1537. Задача выбора распределения, отражающего вероятностную семантику алгебраической байесовской сети
Рассмотрение различных подходов к конструированию распределения, задаваемого алгебраической байесовской сетью. Характеристика и особенности основных подходов к выбору распределения. Специфика алгоритма поиска распределения, случай циклической сети.
Необходимые условия единственности решения первой граничной задачи для нагруженного уравнения Лаврентьева-Бицадзе в прямоугольной области. Представление решения в виде суммы ряда по функциям соответствующей одномерной задачи на собственные значения.
Рассмотрение задачи Дирихле и доказывание достаточных условий ей однозначной разрешимости для абстрактного уравнения Бесселя-Струве. Установление равномерной корректности задачи Коши для уравнения Бесселя-Струве. Определение операторной функции Бесселя.
Обоснование постановки задачи измерения характеристик стационарных процессов в рамках корреляционной теории. Структура взаимосвязи объектов при построении модели по данным измерений. Статистическое оценивание характеристик стационарных процессов.
- 1541. Задача комивояжера
Комбинаторика как выбор и расположение элементов некоторого множества в соответствии с заданными правилами. Классические комбинаторные задачи. Задача коммивояжера, имеющая ряд применений в исследовании операций при решении некоторых транспортных проблем.
- 1542. Задача коммивояжера
Определение последовательности объезда городов, которая обеспечит минимальное время переезда. Решение задачи о коммивояжере методом ветвей и границ. Неориентированный и ориентированный граф задачи коммивояжера. Теория графов и сетевого моделирования.
- 1543. Задача коммивояжера
Суть задачи сводится к поиску оптимального (кратчайшего, быстрейшего или самого дешевого) пути, проходящего через промежуточный пункты по одному разу и возвращающегося в исходную точку. Дана матрица расстояний. Решение задачи с помощью алгоритма Литтла.
Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.
Решения задачи коммивояжера. Сущность метода прямого перебора. Построение дерева ветвлений и нахождение длины путей. Решение дискретной задачи транспортного типа. Сущность метода "ветвей и границ". Приведение задачи максимизации к задаче минимизации.
Вивчення властивостей ф.м.р. задачi Кошi для розглядуваних систем як функцiї просторової й часової змiнних. Дослiдження властивостей об'ємних потенцiалiв та інтегралів. Умови розв'язностi задачi Кошi для класу квазiлiнiйних параболiчних рiвнянь.
Вид частного решения уравнения n-го порядка. Определение значений линейных комбинаций функции и ее производных. Нахождение решения ДУ n-го порядка, когда все n условий заданы в одной точке. Множество интегральных кривых, проходящих через одну точку.
Основные понятия теории обыкновенных дифференциальных уравнений первого порядка. Достаточные условия существования и единственности решения задачи Коши. Метод последовательных приближений функции. Численные способы математического решения задачи Коши.
Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
Дослідження специфічних властивостей оператора Бесселя нескінченного порядку в класах основних функцій. Аналіз методики відшукання усіх початкових даних задачі Коші, при яких відповідь має ті ж властивості гладкості, що і фундаментальний розв’язок.
Вивчення фундаментального розв'язку задачі Коші. Дослідження диференціальних властивостей, граничної поведінки та одержання оцінок у різних нормах потенціалів. Встановлення коректної розв'язності задачі Коші в широких класах функціональних просторів.
Розробка коректного розв'язку двоточкової крайової задачі про відшукання періодичного розв'язку параболічного рівняння вищого порядку з імпульсною дією. Методика постановки задачі Коші для параболічного псевдодиференціального рівняння вищого порядку.
- 1554. Задача кратчайшего пути
Рассмотрение и анализ различных алгоритмов нахождения кратчайшего пути. Выявление основных методов решения задач поиска кратчайшего пути и их обоснование. Создание алгоритма, находящего кратчайший путь в ориентированном графе, его программная реализация.
Общие сведения о прямых методах безусловной оптимизации. Виды многомерной оптимизации: методы нулевого, первого и второго порядка. Достаточные условия экстремума, функции безусловного экстремума. Необходимые условия экстремума различных переменных.
- 1556. Задача о жуках
Использование формулы Эйлера для плоской сети в задаче о механических жуках, характеристика их свойств. Определение гладкой кривой линии без точек возврата в математике. Доказательство формулы канадского математика Хонсбергера из университета "Ватерлоо".
История решения математической задачи о Кенигсберских мостах. Проблема посещения семи мостовых сооружений. Создание Леонардом Эйлером теория графов. Изучение систем, составление оптимальных маршрутов доставки грузов или маршрутизации данных в Интернете.
- 1558. Задача о назначениях
Основы задач о назначениях в теории. Изучение истории создания венгерского метода решения задач о назначениях. Описание алгоритма решения данным методом за время порядка полинома, не зависящего от величины стоимостей. Реализация задачи о назначениях.
- 1559. Задача о назначениях
Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
Формирование плана решения задачи о назначениях методом экспертных оценок. Определение коэффициентов целевой функции. Программа для реализации решения задачи. Расчет большеразмерной матрицы методом экспертных оценок. Использование вычислительной техники.
