Особенность влияния кубика Рубика на развитие человека. Использование вместо цветов различных фактур. Применение мегаминкса и петаминкса. Проведение первого всемирного чемпионата мира по спидкубингу. Методы, способы и алгоритмы сборки кубика Рубика.
Проблемы измерения длины, массы и времени и их решения древними цивилизациями, стандартизация мер в процессе развития международной торговли. Разработка и уточнение эталонных мер: метра, килограмма, секунды, в рамках международной метрической системы СИ.
Формулировка исходных идей теории относительности в период, предшествующий ее созданию. Ценные идеи крупнейшего мыслителя английского математика Эдмунда Уиттекера. Основные положения, необходимые для аксиоматического построения релятивистской теории.
История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.
- 1535. История тригонометрии
Определение термина "тригонометрия". Развитие тригонометрии как раздела астрономии. Возникновение понятия "тангенс". Вклад арабских ученых в развитие науки. Таблица синусов, тангенсов и котангенсов ученого аль-Маразви. Развитие тригонометрии в Индии.
- 1536. История тригонометрии
История возникновения тригонометрии как науки, особенности ее формирования. Анализ вклада члена Российской академии наук Л. Эйлера в развитие современной тригонометрии. Общая характеристика и методика решения тригонометрических уравнений и неравенств.
История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.
- 1538. История числа Пи
Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.
Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.
Распространение, характеристика и специфика метода улучшения плана для модификаций транспортных задач. Объединение оптимальных решений двух одномерных задач. Квадратичные зависимости по перевозкам продукта из пунктов потребления в пункты производства.
Сущность и особенности оптимальных итерационных процессов. Характеристика итерационных методов первого и второго порядка. Использование итерационных методов линейных алгебраических уравнений. Решение систем нелинейных уравнений, методы уточнения корней.
Многократное фиктивное разыгрывание игры, когда одна итерация называется партией - сущность метода Брауна-Робинсона. Теорема, которая подтверждает сходимость алгоритма. Формулы, применяющиеся для определения значения итеративных последовательностей.
Определение для сингулярно возмущенного операторного уравнения Фредгольма последовательных итерационных, а также асимптотических приближений. Выбор нулевого приближения. Теорема о биортогонализации. Выбор частного решения неоднородного уравнения.
Характеристика итерационных методов для сингулярно возмущенных операторных уравнений Фредгольма. Сущность и задачи нетривиального решения. Процесс получения асимптотического разложения. Описание рекуррентных равенств и их порядок использования.
Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.
Рассмотрение необходимого и достаточного условия сходимости. Характеристика матричной записи методов Якоби и Зейделя. Представление итерационного процесса в матричном виде. Анализ итерационных методов решения систем линейных алгебраических решений.
Развитие итерационных методов решения систем линейных уравнений, путем разработки итерационного метода с использованием аппарата q-дифференцирования. Проведение вычислительного эксперимента с помощью программного пакета Matlab. Методы решения СЛАУ.
Многоуровневое вейвлет-разложение вектора невязки. Расчеты в математическом пакете Matlab. Разработка итерационных методов и их модификаций. Использование вейвлет-анализа для обработки сигналов и быстрого алгоритма нахождения вейвлет-коэффициентов.
Визначення умов, яких потрібно дотримуватись при синтезі еквівалентної математичної моделі об'єкта, що допускає лінеаризацію. Застосування методу найменших квадратів до критерію оптимізації, пов'язаного з логарифмічними частотними характеристиками.
Розробка та застосування методу ідентифікації математичних моделей оптимального струму тягового електродвигуна постійного струму з послідовним збудженням електромобіля, синтезованих з використанням критерію мінімуму витрат енергії акумуляторної батареї.
Визначення критеріїв якості допускових оцінок. Синтез моделей статичних систем. Методика вибору конфігурації субоптимального еліпсоїдного оцінювання. Апробація задач створення технічних засобів для втручання під час операцій на щитоподібній залозі.
Питання розпізнавання та аналізу геометричних форм багатокомпонентних зображень проекційної природи з неоднорідним розподілом яскравості, отриманих в умовах дальньої фотограмметрії. Зображення растрового типу з компонентами спектральних діапазонів.
Вивчення властивостей групи автоморфізмів кореневого однорідного дерева. Індуктивна побудова класу функцій кільця , що є стискаючими. Ототожнення кодування бінарного дерева з двійковим кодуванням цілих 2-адичних чисел, множина обертовних елементів кільця.
Комбінаторні та алгебраїчні властивості інваріантів Васильєва вузлів і асоційованих з ними вагових систем. Співвідношення між сателітними операціями і інваріантами скінченного порядку вузлів і сплетень. Геометричні аспекти інваріантів скінченного порядку.
Теорія диференціальних та різницевих рівнянь в просторі обмежених числових послідовностей. Доведення теорем про редукцію нескінченної системи рівнянь до скінченної, що є лінійним розширенням на m-вимірному торі. Умови існування інваріантних многовидів.
Розробка питань і побудова теорії диференціальних та різницевих рівнянь в просторі обмежених числових послідовностей. Локальні координати для зліченної дискретної системи в околі інваріантного тора. Теорема про звідність системи до канонічного вигляду.
Знаходження умов існування локальних інваріантних поверхонь і перших інтегралів для стохастичних диференціальних рівнянь із стрибками та розробка методів знаходження їх явного вигляду. Дослідження поведінки повної енергії певного гармонічного осцилятора.
- 1558. Інваріантні тори зліченних систем різницевих рівнянь, що містять відхилення дискретного аргументу
Аналіз умов неперервності та неперервної диференційованості інваріантного тору лінійної системи рівнянь. Знаходження умови неперервної диференційованості за кутовою змінною на скінченновимірному торі. Представлення неперервної диференційованості за Фреше.
Поняття інваріантності, його сутність і особливості, різновиди та характеристика кожного з них. Варіантні та інваріантні критерії та явища, їх характеристика та особливості. Чотирьохвектор та інтервал. Простір Міньковського, його характерні риси.
Поняття інверсії на площині та її властивості. Аналітичне задання інверсії. Характеристика видів інверсора як механізму, який здійснює побудову інверсних фігур. Застосування методу інверсії до розв'язування геометричних задач на побудову та доведення.