Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Простейшие свойства модулей непрерывности высших порядков. Обобщение теоремы Джексона, неравенства С.Н. Бернштейна, обратных теорем теории приближения. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную непрерывную функцию.
Рубрика | Математика |
Предмет | Математический анализ |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Любовь |
Дата добавления | 26.02.2020 |
Размер файла | 657,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Задача теории приближений - нахождение связей между структурными свойствами функции и порядком стремления к нулю последовательности ее наилучших приближений тригонометрическими или алгебраическими полиномами. Вычисление модулей гладкости для функций.
дипломная работа [4,4 M], добавлен 11.06.2013Вспомогательные леммы. Теоремы Джексона для к-го обобщенного модуля гладкости. Обобщенное неравенство Минковского. Тригонометрический полином. Вычисление модулей гладкости для некоторых функций. Понятие прямой и обратной теоремы теории приближений.
курсовая работа [3,0 M], добавлен 26.05.2013Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
курсовая работа [209,4 K], добавлен 04.01.2016Характеристика тригонометрических понятий. Свойства тригонометрических функций, особенности их практического применения в электротехнике. Исследование электрических сигналов путем визуального наблюдения графика сигнала на экране с помощью осциллографа.
презентация [287,9 K], добавлен 28.05.2016Задача исследования устойчивости нелинейной динамической системы. Аппроксимации функций с использованием обобщений полиномов Бернштейна. Анализ скорости сходимости и эффективности итерационной формулы, сравнение с классическими численными методами.
дипломная работа [1002,2 K], добавлен 23.06.2011Определение и простейшие свойства измеримой функции. Дальнейшие свойства измеримых функций. Последовательности измеримых функций. Сходимость по мере. Структура измеримых функций. теоремы о приближении измеримых функций.
курсовая работа [86,9 K], добавлен 28.05.2007Понятие числовых функций с областью определения, аргумент и области их значений, свойства и графическое выражение. Определение четных и нечетных функций, периодичность тригонометрических функций. Свойства, используемые при построении их графиков.
презентация [22,9 K], добавлен 13.12.2011Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
курсовая работа [942,4 K], добавлен 21.12.2009Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.
курсовая работа [1,1 M], добавлен 11.01.2011