Исследование кривых и поверхностей второго порядка
Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.10.2010 |
Размер файла | 231,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задание 1
1. Определить зависимость типа данной кривой от параметра с помощью инвариантов.
2. Привести уравнение кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
3. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка.
4. Написать уравнения осей канонической системы координат.
5. Построить кривую в канонической и общей системах координат.
Задание 2
Для данного уравнения поверхности второго порядка:
1. Исследовать форму поверхности методом сечений и построить полученные сечения.
2. Построить поверхность в канонической системе координат.
Цель
Целью курсовой работы является закрепление и углубление полученных студентом знаний и технических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.
Задача
Определить зависимость типа данной кривой от параметра с помощью инвариантов. Привести уравнение кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка. Написать уравнения осей канонической системы координат. Построить кривую в канонической и общей системах координат.
Исследовать форму данной поверхности методом сечений и построить полученные сечения. Построить поверхность в канонической системе координат.
Исходные данные
Уравнение кривой второго порядка:
.
Уравнение поверхности второго порядка:
.
Их инварианты и классификация.
Анализ кривой второго порядка
Для данного уравнения кривой второго порядка:
(1)
1. Определение зависимости типа данной кривой (1) от параметра с помощью инвариантов
Для уравнения кривой второго порядка (1) имеем:
Вычислим инварианты кривой
.
.
.
В соответствии с классификацией кривых второго порядка:
Если I2 = 0, то уравнение (1) определяет кривую параболического типа. Но I2 = -306-11 , следовательно, если , то уравнение (1) определяет кривую параболического типа. Но при этом , следовательно, если , то уравнение (1) определяет параболу.
Если I2 0, то данная кривая - центральная. Следовательно, при данная кривая - центральная.
Если I2 > 0, то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом I1I3 = (1-)(4885-306) < 0, и в соответствии с признаками кривых второго порядка (I2 > 0, I1I3 < 0) получим, что если , то уравнение (1) определяет эллипс.
Если I2 < 0, то уравнение (1) определяет кривую гиперболического типа. Следовательно, если , то уравнение (1) определяет кривую гиперболического типа.
Если I2 < 0 и I3 = 0, то уравнение (1) определяет две пересекающиеся прямые. Получим:
Следовательно, если , то уравнение (1) определяет две пересекающиеся прямые.
Если I2 < 0 и I3 0, то данная кривая - гипербола. Но I3 0 при всех за исключением точки . Следовательно, если , то уравнение (1) определяет гиперболу.
2. Приведение уравнения кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей
При = 0 уравнение (1) принимает следующий вид:
(2)
Согласно таблице, это гипербола. Приведем уравнение кривой (2) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей. Мы установили, что данная кривая - центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой.
а) Совершим параллельный перенос начала координат в точку . При этом координаты x, y произвольной точки М плоскости в системе координат xOy и координаты x', y' в новой системе координат x'O'y' связаны соотношениями:
.
Подставляя эти выражения для x и y в уравнение (1), получим:
.
Раскрывая скобки и приводя подобные члены, получим уравнение вида
В этом уравнении коэффициенты при x' и y' приравняем к нулю. Получим систему уравнений относительно
,
которая определяет координаты центра исходной кривой. Следовательно, , - решение данной системы и точка О'(2, 4) - центр данной кривой. Подставим найденные значения в уравнение (2), получим
(3)
б) Дальнейшее упрощение уравнения (3) достигается при помощи поворота осей координат на угол .
При повороте осей координат на угол координаты x', y' произвольной точки М плоскости в системе координат х'O'y' и координаты Х, Y в новой системе координат XO'Y связаны соотношениями:
. (4)
Подставляя (4) в уравнение кривой (3), получим:
.
Раскроем скобки и приведем подобные члены, получим уравнение вида:
(5)
Выберем угол такой, что в уравнении (5) коэффициент при произведении XY равен нулю:
Это требование эквивалентно уравнению:
(6)
Решая уравнение (6), получим:
Tg=k, k - угловой коэффициент оси О'Х. Он определяется формулой:
1 - корень характеристического уравнения данной кривой, совпадающий со знаком I3. Характеристическое уравнение для данной кривой (1) имеет вид
Следовательно,
Тогда получим, что , через tg найдем sin и cos:
. .
Подставляя эти значения в уравнение (5), получим:
т. е. преобразование уравнения будет иметь вид
и, соответственно, уравнение
- это каноническое уравнение исходной гиперболы с центром в точке O'(2, 4) и полуосями и .
3. Нахождение фокусов, директрис, эксцентриситета и асимптот (если они есть) данной кривой второго порядка
Найдем фокусы гиперболы. Коoрдинаты F1,2 равны (с, 0), с определяется по формуле:
,
Следовательно, точки и - фокусы данной гиперболы.
Найдем эксцентриситет гиперболы:
.
Найдем директрисы гиперболы:
D1: D2: .
Найдем асимптоты гиперболы:
.
4. Вывод уравнения осей канонической системы координат
Напишем уравнения осей канонической системы координат. Из задания 2 известно, что точка О'(2, 4) - центр данной кривой. Оттуда же известен угловой коэффициент оси O'X . Напишем уравнения осей новой системы координат XO'Y в исходной системе координат xOy. Так как система XO'Y - каноническая для данной гиперболы, то ее центр находится в центре кривой - точке О'(2, 4), т е. оси О'X и O'Y проходят через точку О'. Уравнение прямой, проходящей через данную точку , с заданным угловым коэффициентом k имеет вид:
Следовательно, ось О'X в системе координат xOy имеет уравнение или
Так как ось О'Y перпендикулярна оси О'X, то ее угловой коэффициент Следовательно, ось О'Y имеет уравнение или .
5. Построение кривой в канонической и общей системах координат
На основе полученной информации, нарисуем кривую в канонической и общей системах координат:
Рис. 1. Кривая в общей и канонической системах координат.
Рис. 2. Кривая в канонической системе координат.
Анализ поверхности второго порядка
Для данного уравнения поверхности второго порядка:
(7)
1. Исследование формы поверхности методом сечений и построение полученных сечений
1) Для того чтобы исследовать поверхность методом сечений, сначала приведем уравнение (7) к каноническому виду с помощью параллельного переноса и поворота осей координат.
Совершим параллельный перенос начала координат в точку . При этом координаты x, y, z произвольной точки М плоскости в системе координат Oxyz и координаты x', y', z' в новой системе координат O'x'y'z' связаны соотношениями:
.
Подставляя эти выражения для x, y, z в уравнение (7), получим:
Раскрывая скобки и приводя подобные члены, получим уравнение вида
(8)
В уравнении (8) коэффициенты при x,' y', z' приравняем к нулю. Получим систему уравнений относительно ,
,
которая определяет координаты центра исходной поверхности. Следовательно, , , - решение данной системы и точка - центр данной поверхности. Подставим найденные значения , в уравнение (8), получим
. (9)
Дальнейшее упрощение уравнения (3) достигается при помощи поворота осей координат на угол . При повороте осей координат O'Y и O'Zна угол координаты y', z' произвольной точки М плоскости yOz в системе координат O'х'y'z' и координаты Y, Z в новой системе координат O'XYZ связаны соотношениями:
. (10)
Подставляя (10) в уравнение поверхности (9) с последующим раскрытием скобок и приведением подобных членов, получим уравнение вида:
Выберем угол такой, что в уравнении (11) коэффициент при произведении YZ равен нулю:
.
Получим, что , . Чтобы выбрать нужный , решим характеристическое уравнение для эллипса :
Отсюда вычислим угловой коэффициент поворота осей k:
Следовательно, cos = sin = .
Подставляя эти значения в уравнение (11), получим:
,
т. е. уравнение
(12)
- это каноническое уравнение для данной поверхности, которое задает эллипсоид с полуосями и . Т. к. a=b, то эллипсоид называется сплюснутым.
2) Данное каноническое уравнение (12) задает эллипсоид.
Рассмотрим линии, полученные в сечениях эллипсоида плоскостями Z=h (h=const). Эти линии определяются системой уравнений:
Решая эту систему, получаем:
(13)
где h - любое вещественное число. Уравнения (13) - это уравнения окружностей с радиусом , уменьшающимся с увеличением h, с центрами на оси O'Z в точках C(0, 0, h). Плоскость XO'Y (h=0) пересекает эллипсоид по окружности:
Эта окружность будет наибольшей, как видно из выражения радиуса. При получаем уравнение:
,
т. е. сечения в таких значениях h будут представлять собой точки в центре координат полученных сечений. При получаем отрицательное число под корнем, т. е. при таких значениях h плоскость XO'Y не пересекает данный эллипсоид. При получаем окружность:
Изобразим полученные сечен
ия:
Рис. 3. Сечение плоскостью Z=h.
Рассмотрим линии, полученные в сечениях эллипсоида плоскостью X=h:
Решая эту систему, получаем:
(14)
где h - любое вещественное число. Уравнения (14) - это уравнения эллипсов с полуосями:
уменьшающимися с увеличением h, с центрами на оси O'X в точках C(h, 0, 0) и осями, параллельными плоскости YO'Z.
Плоскость YO'Z (h=0) пересекает эллипсоид по эллипсу
Этот эллипс будет наибольшим, как видно из выражения полуосей. При получаем уравнение
т. е. сечения в таких значениях h будут представлять собой точки в центре координат полученных сечений. При получаем
т. е. при таких значениях h плоскость YO'Z не пересекает данный эллипсоид. При получаем эллипс:
Изобразим полученные сечения:
Рис. 4. Сечение плоскостью X=h.
Аналогичная картина получаются при сечении эллипсоида плоскостью XO'Z.
2. Построение поверхности в канонической системе координат
Проанализировав каноническое уравнение эллипсоида (12) и на основе данных исследований методом сечений плоскостями, построим эллипсоид:
Рис. 5. Эллипсоид
Вывод
Мы научились приводить уравнения кривых и поверхностей второго порядка к каноническому виду, применяя параллельный перенос и поворот осей, строить их, исследовать поверхность методом сечений. Также мы приобрели навыки оформления текстовых документов.
Список использованной литературы:
1. Ильин В. А., Позняк Г. Аналитическая геометрия. - М.: Наука, 1974
2. Ефимов А. В., Демидович Б. П. Сборник задач по математике для ВТУЗов (4 части). - М.: Наука, 1993.
Подобные документы
Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.
контрольная работа [133,5 K], добавлен 12.01.2011Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.
курсовая работа [166,1 K], добавлен 17.05.2011Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа [132,8 K], добавлен 28.06.2009Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.
курсовая работа [231,0 K], добавлен 28.06.2009Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.
курсовая работа [654,1 K], добавлен 28.09.2019Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.
курсовая работа [132,1 K], добавлен 14.10.2011Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа [277,9 K], добавлен 28.11.2012Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.
курсовая работа [128,4 K], добавлен 18.11.2010Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.
контрольная работа [259,7 K], добавлен 28.03.2014Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.
реферат [202,6 K], добавлен 26.01.2011