Исследование кривых и поверхностей второго порядка

Зависимость типа кривой от параметра с помощью инвариантов: нахождение фокусов, директрис, эксцентриситета и асимптот. Исследование формы поверхности методом сечений и построение полученного. Построение поверхности в канонической системе координат.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 19.11.2010
Размер файла 238,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Международный университет природы, общества и человека

«Дубна»

Кафедра высшей математики

Курсовая работа

по линейной алгебре и аналитической геометрии

студентки I курса 1033 группы

Ярмак Елены Владимировны

«Исследование кривых и поверхностей второго порядка»

Руководители:

старший преподаватель Маркова И. А.

ассистент Павлов А. С.

Дубна, 2002

Оглавление

Задание 1

Задание 2

Цель

Задача

Исходные данные

Анализ кривой второго порядка

1. Определение зависимости типа данной кривой (1) от параметра с помощью инвариантов

2. Приведение уравнения кривой при ? = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей

3. Нахождение фокусов, директрис, эксцентриситета и асимптот (если они есть) данной кривой второго порядка

4. Вывод уравнения осей канонической системы координат

5. Построение кривой в канонической и общей системах координат

Анализ поверхности второго порядка

1. Исследование формы поверхности методом сечений и построение полученных сечений

2. Построение поверхности в канонической системе координат

Вывод

Список использованной литературы

Задание 1

1.Определить зависимость типа данной кривой от параметра с помощью инвариантов.

2. Привести уравнение кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

3. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка.

4. Написать уравнения осей канонической системы координат.

5. Построить кривую в канонической и общей системах координат.

Задание 2

Для данного уравнения поверхности второго порядка:

1. Исследовать форму поверхности методом сечений и построить полученные сечения.

2. Построить поверхность в канонической системе координат.

Цель

Целью курсовой работы является закрепление и углубление полученных студентом знаний и технических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.

Задача

Определить зависимость типа данной кривой от параметра с помощью инвариантов. Привести уравнение кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка. Написать уравнения осей канонической системы координат. Построить кривую в канонической и общей системах координат.

Исследовать форму данной поверхности методом сечений и построить полученные сечения. Построить поверхность в канонической системе координат.

Исходные данные

Уравнение кривой второго порядка:

.

Уравнение поверхности второго порядка:

.

Их инварианты и классификация.

Анализ кривой второго порядка

Для данного уравнения кривой второго порядка:

(1)

1. Определение зависимости типа данной кривой (1) от параметра с помощью инвариантов

Для уравнения кривой второго порядка (1) имеем:

Вычислим инварианты кривой

.

.

.

В соответствии с классификацией кривых второго порядка:

Если I2 = 0, то уравнение (1) определяет кривую параболического типа. Но I2 = -306-11 , следовательно, если , то уравнение (1) определяет кривую параболического типа. Но при этом , следовательно, если , то уравнение (1) определяет параболу.

Если I2 0, то данная кривая - центральная. Следовательно, при данная кривая - центральная.

Если I2 > 0, то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом I1I3 = (1-)(4885-306) < 0, и в соответствии с признаками кривых второго порядка (I2 > 0, I1I3 < 0) получим, что если , то уравнение (1) определяет эллипс.

Если I2 < 0, то уравнение (1) определяет кривую гиперболического типа. Следовательно, если , то уравнение (1) определяет кривую гиперболического типа.

Если I2 < 0 и I3 = 0, то уравнение (1) определяет две пересекающиеся прямые. Получим:

Следовательно, если , то уравнение (1) определяет две пересекающиеся прямые.

Если I2 < 0 и I3 0, то данная кривая - гипербола. Но I3 0 при всех за исключением точки . Следовательно, если , то уравнение (1) определяет гиперболу. Используя полученные результаты, построим таблицу:

Значение параметра

Тип кривой

Эллипс

Парабола

Гипербола

Две пересекающиеся прямые

Гипербола

2. Приведение уравнения кривой при = 0 к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей

При = 0 уравнение (1) принимает следующий вид:

(2)

Согласно таблице, это гипербола. Приведем уравнение кривой (2) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей. Мы установили, что данная кривая - центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой.

а) Совершим параллельный перенос начала координат в точку . При этом координаты x, y произвольной точки М плоскости в системе координат xOy и координаты x', y' в новой системе координат x'O'y' связаны соотношениями:

.

Подставляя эти выражения для x и y в уравнение (1), получим:

.

Раскрывая скобки и приводя подобные члены, получим уравнение вида

В этом уравнении коэффициенты при x' и y' приравняем к нулю. Получим систему уравнений относительно

,

которая определяет координаты центра исходной кривой. Следовательно, , - решение данной системы и точка О'(2, 4) - центр данной кривой. Подставим найденные значения в уравнение (2), получим

(3)

б) Дальнейшее упрощение уравнения (3) достигается при помощи поворота осей координат на угол .

При повороте осей координат на угол координаты x', y' произвольной точки М плоскости в системе координат х'O'y' и координаты Х, Y в новой системе координат XO'Y связаны соотношениями:

.(4)

Подставляя (4) в уравнение кривой (3), получим:

.

Раскроем скобки и приведем подобные члены, получим уравнение вида:

(5)

Выберем угол такой, что в уравнении (5) коэффициент при произведении XY равен нулю:

Это требование эквивалентно уравнению:

(6)

Решая уравнение (6), получим:

Tg=k, k - угловой коэффициент оси О'Х. Он определяется формулой:

1 - корень характеристического уравнения данной кривой, совпадающий со знаком I3. Характеристическое уравнение для данной кривой (1) имеет вид

Следовательно,

Тогда получим, что , через tg найдем sin и cos:

. .

Подставляя эти значения в уравнение (5), получим:

т. е. преобразование уравнения будет иметь вид

и, соответственно, уравнение

- это каноническое уравнение исходной гиперболы с центром в точке O'(2, 4) и полуосями и .

3. Нахождение фокусов, директрис, эксцентриситета и асимптот (если они есть) данной кривой второго порядка

Найдем фокусы гиперболы. Коoрдинаты F1,2 равны (с, 0), с определяется по формуле:

,

Следовательно, точки и - фокусы данной гиперболы.

Найдем эксцентриситет гиперболы:

.

Найдем директрисы гиперболы:

D1: D2: .

Найдем асимптоты гиперболы:

.

4. Вывод уравнения осей канонической системы координат

Напишем уравнения осей канонической системы координат. Из задания 2 известно, что точка О'(2, 4) - центр данной кривой. Оттуда же известен угловой коэффициент оси O'X . Напишем уравнения осей новой системы координат XO'Y в исходной системе координат xOy. Так как система XO'Y - каноническая для данной гиперболы, то ее центр находится в центре кривой - точке О'(2, 4), т е. оси О'X и O'Y проходят через точку О'. Уравнение прямой, проходящей через данную точку , с заданным угловым коэффициентом k имеет вид:
Следовательно, ось О'X в системе координат xOy имеет уравнение или

Так как ось О'Y перпендикулярна оси О'X, то ее угловой коэффициент Следовательно, ось О'Y имеет уравнение или .

5. Построение кривой в канонической и общей системах координат

На основе полученной информации, нарисуем кривую в канонической и общей системах координат:

Рис. 1. Кривая в общей и канонической системах координат.

Рис. 2. Кривая в канонической системе координат.

Анализ поверхности второго порядка

Для данного уравнения поверхности второго порядка:

(7)

1. Исследование формы поверхности методом сечений и построение полученных сечений

1) Для того чтобы исследовать поверхность методом сечений, сначала приведем уравнение (7) к каноническому виду с помощью параллельного переноса и поворота осей координат.

Совершим параллельный перенос начала координат в точку . При этом координаты x, y, z произвольной точки М плоскости в системе координат Oxyz и координаты x', y', z' в новой системе координат O'x'y'z' связаны соотношениями:

.

Подставляя эти выражения для x, y, z в уравнение (7), получим:

Раскрывая скобки и приводя подобные члены, получим уравнение вида

(8)

В уравнении (8) коэффициенты при x,' y', z' приравняем к нулю. Получим систему уравнений относительно ,

,

которая определяет координаты центра исходной поверхности. Следовательно, , , - решение данной системы и точка - центр данной поверхности. Подставим найденные значения , в уравнение (8), получим

.(9)

Дальнейшее упрощение уравнения (3) достигается при помощи поворота осей координат на угол . При повороте осей координат O'Y и O'Zна угол координаты y', z' произвольной точки М плоскости yOz в системе координат O'х'y'z' и координаты Y, Z в новой системе координат O'XYZ связаны соотношениями:

.(10)

Подставляя (10) в уравнение поверхности (9) с последующим раскрытием скобок и приведением подобных членов, получим уравнение вида:

(11)

Выберем угол такой, что в уравнении (11) коэффициент при произведении YZ равен нулю:

.

Получим, что , . Чтобы выбрать нужный , решим характеристическое уравнение для эллипса :

Отсюда вычислим угловой коэффициент поворота осей k:

Следовательно, cos = sin = .

Подставляя эти значения в уравнение (11), получим:

,

т. е. уравнение

(12)

- это каноническое уравнение для данной поверхности, которое задает эллипсоид с полуосями и . Т. к. a=b, то эллипсоид называется сплюснутым.

2) Данное каноническое уравнение (12) задает эллипсоид.

Рассмотрим линии, полученные в сечениях эллипсоида плоскостями Z=h (h=const). Эти линии определяются системой уравнений:

Решая эту систему, получаем:

(13)

где h - любое вещественное число. Уравнения (13) - это уравнения окружностей с радиусом , уменьшающимся с увеличением h, с центрами на оси O'Z в точках C(0, 0, h). Плоскость XO'Y (h=0) пересекает эллипсоид по окружности:

Эта окружность будет наибольшей, как видно из выражения радиуса. При получаем уравнение:

,

т. е. сечения в таких значениях h будут представлять собой точки в центре координат полученных сечений. При получаем отрицательное число под корнем, т. е. при таких значениях h плоскость XO'Y не пересекает данный эллипсоид. При получаем окружность:

Изобразим полученные сечения:

Рис. 3. Сечение плоскостью Z=h.

Рассмотрим линии, полученные в сечениях эллипсоида плоскостью X=h:

Решая эту систему, получаем:

(14)

где h - любое вещественное число. Уравнения (14) - это уравнения эллипсов с полуосями:

уменьшающимися с увеличением h, с центрами на оси O'X в точках C(h, 0, 0) и осями, параллельными плоскости YO'Z.

Плоскость YO'Z (h=0) пересекает эллипсоид по эллипсу

Этот эллипс будет наибольшим, как видно из выражения полуосей. При получаем уравнение

т. е. сечения в таких значениях h будут представлять собой точки в центре координат полученных сечений. При получаем

т. е. при таких значениях h плоскость YO'Z не пересекает данный эллипсоид. При получаем эллипс:

Изобразим полученные сечения:

Рис. 4. Сечение плоскостью X=h.

Аналогичная картина получаются при сечении эллипсоида плоскостью XO'Z.

2. Построение поверхности в канонической системе координат

Проанализировав каноническое уравнение эллипсоида (12) и на основе данных исследований методом сечений плоскостями, построим эллипсоид:

Рис. 5. Эллипсоид.

Вывод

Мы научились приводить уравнения кривых и поверхностей второго порядка к каноническому виду, применяя параллельный перенос и поворот осей, строить их, исследовать поверхность методом сечений. Также мы приобрели навыки оформления текстовых документов.

Список использованной литературы

1. Ильин В. А., Позняк Г. Аналитическая геометрия. - М.: Наука, 1974

2. Ефимов А. В., Демидович Б. П. Сборник задач по математике для ВТУЗов (4 части). - М.: Наука, 1993.


Подобные документы

  • Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.

    курсовая работа [132,8 K], добавлен 28.06.2009

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа [166,1 K], добавлен 17.05.2011

  • Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.

    контрольная работа [133,5 K], добавлен 12.01.2011

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа [231,0 K], добавлен 28.06.2009

  • Поверхности второго порядка. Исследование поверхности методом параллельных сечений. Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением.

    реферат [361,3 K], добавлен 15.04.2003

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • Гипербола и ее свойства. Каноническая система координат. Понятие эксцентриситета, его зависимость от отношения мнимой и действительной полуосей. Уравнение директрис. Определение центра, оси, вершин, фокусов, эксцентриситета и асимптоты заданной гиперболы.

    презентация [3,9 M], добавлен 02.06.2016

  • Нахождение координат треугольника по заданным вершинам. Условия перпендикулярности, параллельности и совпадения прямых. Уравнение плоскости, проходящей через точку. Составление канонических уравнений прямой, кривой второго порядка и поверхности.

    контрольная работа [259,7 K], добавлен 28.03.2014

  • Уравнение для описания поверхности второго порядка в аффинной системе координат. Виды квадрики в прямоугольной системе координат: мнимый эллипсоид, гиперболоид, конус, параболоид, цилиндр, плоскости. Способы приведения квадрики к каноническому виду.

    курсовая работа [4,5 M], добавлен 19.09.2012

  • Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.

    курсовая работа [128,4 K], добавлен 18.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.