Иррациональные уравнения

Определение и методы решения иррациональных уравнений. Преобразования, при которых уравнение переходит в равносильное уравнение. Решение уравнения возведением обеих его частей в квадрат или введением новой переменной. Использование искусственных приемов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 06.03.2010
Размер файла 49,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Иррациональные уравнения

Введение

В школьном курсе алгебры рассматриваются различные виды уравнений - линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная курсовая работа посвящена иррациональным уравнениям, методам их решения. Кроме того, в работе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. В данной работе содержится небольшая историческая справка, посвященная введению иррациональных чисел.

1. Из истории

Термин «рациональное» (число) происходит от латиноамериканского слова ratio - отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.

Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» - невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus - глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»

Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.

2. Определение иррациональных уравнений

Равносильные уравнения. Следствия уравнений.

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения

3x-6=0; 2х-1=3

равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения f(x)=g(x) и f1(x)=g1(x) равносильны, обозначают так:

f(x)=g(x) f1(x)=g1(x)

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство:

Докажем, что уравнение

f(x) = g(x)+q(x) (1)

равносильно уравнению

f(x) - q(x) = g(x) (2)

Пусть х=а - корень уравнения. Значит имеет место числовое равенство f(a)=g(a)+q(a). Но тогда по свойству действительных чисел будет выполняться и числовое равенство f(a)-q(a)=g(a) показывающее, что а - корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказатью.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение 6х-3=0 равносильно уравнению 2х-1=0

решим уравнение 6х-3=0 и уравнение 2х-1=0

6х=3 2х=1

х=0,5 х=0,5

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

Рассмотрим уравнение

ОДЗ этого уравнения {х ? 1, х ? -3}

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. хІ+х-2=0, а знаменатель не равен 0. Решая уравнение хІ+х-2=0, находим корни х1=1, х2 = -2. Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение хІ+х-2=0, есть следствие уравнения

пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Этот факт записывают так:

В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение - следствие

хІ+х-2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению - следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения - корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

ОДЗ которого {х -2},

получим уравнение следствие хІ-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 - посторонний, так как не входит в ОДЗ исходного уравнения.

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение (х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2.

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

3. Определение иррациональных уравнений

Иррациональными называются уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Например:

4. Методы решения иррациональных уравнений

Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.

Пример №1

Решить уравнение

Возведем обе части уравнения (1) в квадрат:

далее последовательно имеем:

5х - 16 = хІ - 4х + 4

хІ - 4х + 4 - 5х + 16 = 0

хІ - 9х + 20 = 0

Ответ: 4; 5.

Пример №2

Решить уравнение:

(2)

Решение:

Преобразуем уравнение к виду:

и применим метод возведения в квадрат:

далее последовательно получаем.

Разделим обе части последнего уравнения почленно на 2:

еще раз применим метод возведения в квадрат:

далее находим:

9(х+2)=4-4х+хІ

9х+18-4+4х-хІ=0

-хІ+13х+14=0

хІ-13х-14=0

х1+х2 =13 х1 =19

х1 х2 = -14 х2 = -1

по теореме, обратной теореме Виета, х1=14, х2 = -1

корни уравнения хІ-13х-14 =0

частей уравнения в одну и ту же степень. Но можно решить и другим способом - методом введения новых переменных.

Введем новую переменную Тогда получим 2yІ+y-3=0 - квадратное уравнение относительно переменной y. Найдем его корни:

Искусственные приёмы решения иррациональных уравнений.

Решить уравнение:

(1)

Решение:

Умножим обе части заданного уравнения на выражение

сопряжённое выражению

Так как

То уравнение (1) примет вид:

Или

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом известен. Тогда x1=0.Остаётся решить уравнение:

(2)

Сложив уравнения (1) и (2), придём к уравнению

(3)

Решая уравнение (3) методом возведения в квадрат, получим:

Заключение

Итак, уравнения, которые содержат переменную под знаком корня, называются иррациональными. Иррациональные уравнения решаются в основном возведением обеих частей уравнения в квадрат (или n-ую степень) или введением новой переменной. Кроме того, пользуются и искусственными приемами решения иррациональных уравнений.

Список литературы

1) А.Г. Мордкович. Алгебра 8 класс. Учебник для общеобразовательных учреждений - Москва: Издательство «Мнемозина», 1999.

2) М.Я. Выгодский. Справочник по элементарной математике - Москва: Издательство «Наука», 1986.

3) А.П. Савин. Энциклопедический словарь юного математика - Москва: Издательство «Педагогика», 1989.

4) А.И. Макушевич. Детская энциклопедия - Москва: Издательство «Педагогика», 1972.

5) Н.Я. Виленкин. Алгебра для 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением изучением математики - Москва: Издательство «Просвещение», 1998.

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/


Подобные документы

  • Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.

    презентация [94,6 K], добавлен 08.11.2011

  • Решение стандартных, нестандартных, показательных, логарифмических, повышенного уровня иррациональных уравнений с применением производной и основных свойств функции (области определения, значения, монотонности ограниченности), введения новой переменной.

    курсовая работа [331,3 K], добавлен 15.06.2010

  • Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).

    презентация [12,2 K], добавлен 20.12.2011

  • Методы решений иррациональных уравнений. Метод замены переменных. Линейные комбинации двух и более радикалов. Уравнение с одним радикалом. Умножение на сопряженное выражение. Метод решения уравнений путем выделения полных квадратов под знаком радикала.

    контрольная работа [116,6 K], добавлен 15.02.2016

  • Историческая справка об иррациональных уравнениях. Решение иррациональных уравнений. Преобразование иррациональных выражений. Уравнения с радикалом третьей степени. Введение нового неизвестного.

    реферат [81,3 K], добавлен 09.04.2005

  • Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа [209,4 K], добавлен 15.12.2011

  • Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением. Свойства логарифмической функции, методы решения уравнений и неравенств. Использование свойств логарифма. Решение показательных уравнений.

    курсовая работа [265,0 K], добавлен 12.10.2010

  • Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.

    контрольная работа [51,5 K], добавлен 05.01.2016

  • Понятие уравнения, его корни. Решение уравнения, усвоение понятий равносильного и линейного уравнений, нахождение их корней при переносе слагаемых, при наличии скобок. Формирование вычислительных навыков учащихся, их памяти и мыслительных операций.

    конспект урока [118,0 K], добавлен 14.05.2014

  • Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.

    курсовая работа [183,1 K], добавлен 25.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.