Иррациональные уравнения

Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 29.10.2010
Размер файла 51,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

В школьном курсе алгебры рассматриваются различные виды уравнений - линейные, квадратные, биквадратные, кубические, рациональные, с параметрами, иррациональные и другие. Данная курсовая работа посвящена иррациональным уравнениям, методам их решения. Кроме того, в работе введены понятия уравнений следствий и равносильных уравнений, а также приведены примеры задач, математическими моделями которых служат иррациональные уравнения. В данной работе содержится небольшая историческая справка, посвященная введению иррациональных чисел.

1. Из истории

Термин «рациональное» (число) происходит от латиноамериканского слова ratio - отношение, которое является переводом греческого слова “логос”в отличие от рациональных чисел, числа, выражающие отношение несоизмеримых величин, были названы еще в древности иррациональными, т.е. нерациональными (по-гречески “алогос”) правда, первоначально термины “рациональный” и “иррациональный” относились не к числам, а к соизмеримым и соответственно не соизмеримым величинам, которые пифагорейцы называли выразимыми и невыразимыми, Теодор Киренский же симметричными и ассимметричными. В V-VI вв. римские авторы Капелла и Кассиодор переводили эти термины на латынь словами rationalis и irrationalis. Термин «соизмеримый» (commensurabilis) ввел в первой половине VI в. другой римский автор- Боэций.

Древнегреческие математики классической эпохи пользовались только рациональными числами (вернее целыми, дробными и положительными). В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например, корень из квадратного числа, «алогос» - невыразимое словами, а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus - глухой. В Европе термин surdus- глухой впервые появился в середине XII в. у Герарда Кремонского, известного переводчика математических прозведений с арабского на латынь, затем у итальянского математика Леонардо Фабоначчи и других европейских математиков, вплоть до XVIII в. Правда уже в XVI в. Отдельные ученые, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин считали понятие иррационального числа равноправным с понятием рационального числа. Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью.»

Еще до Бомбелли и Стевина многие ученые стран Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Более того, комментируя «Начала» Евклида и исследуя общую теорию отношения Евдокса, Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В том же направлении много было сделано крупнейшим математиком XIII в. ат-Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами древнего Вавилона и эллинистической эпохи широко пользовались шестидесятеричными дробями, арифметические действия с которыми они называли «арифметикой астрономов». По аналогии с шестидесятеричными дробями самаркандский ученый XV в. ал-Каши в работе «Ключ арифметики» ввел десятичные дроби которыми он пользовался для повышения точности извлечения корней. Независимо от него по такому же пути шел открывший в 1585 г. десятичные дроби в Европе Симон Стевин, который в своих «приложениях к алгебре» (1594 г.) показал, что десятичные дроби можно использовать для бесконечно близкого приближения к действительному числу. Таким образом, уже в XVI в. зародилась идея о том, что естественным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков (и геометрических величин вообще) и необходимости расширения понятия рационального числа. На числовой оси иррациональные числа, как и рациональные, изображаются точками. Это геометрическое толкование позволило лучше понять природу иррациональных чисел и способствовало их признанию.

В современных учебных руководствах основа определения иррационального числа опирается на идеи ал-Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснованием свойств действительных чисел и полная теория их была разработана лишь в XIX в.

2. Определение иррациональных уравнений

Равносильные уравнения. Следствия уравнений.

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

Определение: Уравнение f(x)=g(x) равносильно уравнению f1(x)=g1(x), если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х-1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство:

Докажем, что уравнение

f(x) = g(x)+q(x) (1)

равносильно уравнению

f(x) - q(x) = g(x) (2)

Пусть х=а - корень уравнения. Значит имеет место числовое равенство

f(a)=g(a)+q(a)

Но тогда по свойству действительных чисел будет выполняться и числовое равенство

f(a)-q(a)=g(a)

показывающее, что а - корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказатью.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение 6х-3=0 равносильно уравнению 2х-1=0

решим уравнение 6х-3=0 и уравнение 2х-1=0

6х=3; 2х=1

х=0,5; х=0,5

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

ОДЗ этого уравнения {х ? 1, х ? -3}

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е. хІ+х-2=0, а знаменатель не равен 0. Решая уравнение хІ+х-2=0, находим корни х1=1, х2 = -2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение хІ+х-2=0, есть следствие уравнения пусть даны два уравнения:

f1 (x) = g1 (x) (3)

f2 (x) = g2 (x) (4)

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

В том случае, когда уравнение (3) - есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение - следствие
хІ+х-2=0, имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению - следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения - корни, не принадлежащие ОДЗ, Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения получим уравнение следствие хІ-4=0 имеющее два корня х1 = 2, х2 = -2 корень х2 = -2 - посторонний, так как не входит в ОДЗ исходного уравнения.

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Например, уравнение (х+1)(х+3)= х+1 (5)

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим (х+1)(х+2)=0, откуда находим х1=-1, х2=-2 .

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение х+3=1, имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

3. Методы решения иррациональных уравнений

Решение иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень.

Пример №1

Решить уравнение

Возведем обе части уравнения (1) в квадрат:

далее последовательно имеем:

5х - 16 = хІ - 4х + 4

хІ - 4х + 4 - 5х + 16 = 0

хІ - 9х + 20 = 0

Проверка: Подставив х=5 в уравнение (1), получим - верное равенство.

Подставив х= 4 в уравнение (1), получим - верное равенство. Значит оба найденных значения - корни уравнения.

Ответ: 4; 5.

Метод введения новых переменных.

Решить уравнение

Решение:

Конечно, можно решить это уравнение методом возведения обеих частей уравнения в одну и ту же степень. Но можно решить и другим способом - методом введения новых переменных.

Введем новую переменную Тогда получим 2yІ+y-3=0 - квадратное уравнение относительно переменной y. Найдем его корни:

Т.к. , то - не корень уравнения, т.к. не

может быть отрицательным числом . А - верное равенство, значит x=1- корень уравнения.

Ответ: 1.

Искусственные приёмы решения иррациональных уравнений.

Решить уравнение:

Решение:

Умножим обе части заданного уравнения на выражение

сопряжённое выражению

Так как

То уравнение (1) примет вид:

Или

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом известен. Тогда x1=0.Остаётся решить уравнение:

Сложив уравнения (1) и (2), придём к уравнению

Решая уравнение (3) методом возведения в квадрат, получим:

Проверка:

x1=0, x2=4, x3= -4 подставим в уравнение

не верное равенство, значит x1=0- не корень уравнения.

- верное равенство, значит x2=4- корень уравнения.

3)

- не верное равенство, значит x3= -4- не корень уравнения.

Ответ: 4.

Заключение

Итак, уравнения, которые содержат переменную под знаком корня, называются иррациональными. Иррациональные уравнения решаются в основном возведением обеих частей уравнения в квадрат (или n-ую степень) или введением новой переменной. Кроме того, пользуются и искусственными приемами решения иррациональных уравнений.

Список литературы

1) А.Г.Мордкович. Алгебра 8 класс. Учебник для общеобразовательных учреждений - Москва: Издательство «Мнемозина», 1999.

2) М.Я.Выгодский. Справочник по элементарной математике - Москва: Издательство «Наука», 1986.

3) А.П.Савин. Энциклопедический словарь юного математика - Москва: Издательство «Педагогика», 1989.

4) А.И.Макушевич. Детская энциклопедия - Москва: Издательство «Педагогика», 1972.

5) Н.Я.Виленкин. Алгебра для 9 класс. Учебное пособие для учащихся школ и классов с углубленным изучением изучением математики - Москва: Издательство «Просвещение», 1998.

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vsaeved.ru/


Подобные документы

  • Историческая справка об иррациональных уравнениях. Решение иррациональных уравнений. Преобразование иррациональных выражений. Уравнения с радикалом третьей степени. Введение нового неизвестного.

    реферат [81,3 K], добавлен 09.04.2005

  • Методы решений иррациональных уравнений. Метод замены переменных. Линейные комбинации двух и более радикалов. Уравнение с одним радикалом. Умножение на сопряженное выражение. Метод решения уравнений путем выделения полных квадратов под знаком радикала.

    контрольная работа [116,6 K], добавлен 15.02.2016

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

  • Решение стандартных, нестандартных, показательных, логарифмических, повышенного уровня иррациональных уравнений с применением производной и основных свойств функции (области определения, значения, монотонности ограниченности), введения новой переменной.

    курсовая работа [331,3 K], добавлен 15.06.2010

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа [1,4 M], добавлен 07.09.2010

  • Понятие первообразной функции. Виды иррациональных функций, приемы их интегрирования. Интегрирование рациональных дробей, алгебраических иррациональностей, биномиальных дифференциалов, тригонометрические подстановки. Примеры решения типовых задач.

    курсовая работа [278,4 K], добавлен 07.06.2012

  • История возникновения уравнений, понятие их решения и виды упрощения. Анализ способов решения ряда занимательных задач с помощью уравнений. Обращение Аль-Хорезми с уравнениями как с рычажными весами. Параметры и переменные, область определения и корень.

    реферат [38,0 K], добавлен 01.03.2012

  • Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.

    курсовая работа [1,1 M], добавлен 21.12.2009

  • Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.

    реферат [67,0 K], добавлен 09.02.2009

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа [347,1 K], добавлен 26.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.