Интерполяция функции в математике
Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
Рубрика | Математика |
Предмет | Высшая математика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | денис |
Дата добавления | 10.01.2012 |
Размер файла | 239,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011Вычислительные методы линейной алгебры. Интерполяция функций. Интерполяционный многочлен Ньютона. Узлы интерполяции. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Коэффициенты кубических сплайнов.
лабораторная работа [70,5 K], добавлен 06.02.2004Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.
курсовая работа [2,4 M], добавлен 14.04.2009В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.
контрольная работа [131,6 K], добавлен 05.01.2011Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
курсовая работа [195,1 K], добавлен 08.06.2013Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа [4,9 M], добавлен 06.12.2011Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
курсовая работа [378,5 K], добавлен 08.01.2013Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Построить интерполяционный многочлен Лагранжа. Выполнить интерполяцию сплайнами третьей степени.
лабораторная работа [70,8 K], добавлен 06.02.2004Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.
контрольная работа [155,2 K], добавлен 02.06.2011Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015