Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.
Общая формула условной вероятности. Расчет среднего квадратического отклонения случайной величины. Состояния и события, определяющие надежность объектов электроэнергетики. Таблично-логический метод расчета надежности схем распределительных устройств.
Координаты вектора в прямоугольном трехмерном пространстве. Представление заданного вектора в сферических координатах. Сопутствующий параллелепипед и его три диагонали. Формы преобразования прямоугольных координат в различные сферические координаты.
Аналіз векторів та їхніх властивостей. Напрямлені відрізки, поняття вектора та лінійна залежність. Добуток напрямлених відрізків на число. Нульовий напрямлений відрізок. Розмірність простору та поняття базису. Системи координат та поняття орієнтації.
Сутність понять вектора і скаляра. Геометричні та фізичні вектори, їх зображення та позначення векторної величини. Означення колінеарних і компланарних векторів, лінійні операції над ними. Рівність, модуль, добуток; властивості суми і різниці векторів.
- 306. Векторна алгебра
Основні поняття векторної алгебри, геометрична модель векторної величини. Лінійні операції з векторами, лінійна залежність та лінійна незалежність системи векторів. Визначення проекції вектора на ось. Прямокутна декартова система координат в просторі.
- 307. Векторна алгебра
Викладення векторної алгебри: означення рівного, колінеарного, нульового, одиничного, компланарного та модуля вектора; правило трикутника та паралелограма; різниця та добуток вектора; напрямні косинуси; скалярний, векторний і мішаний добутки векторів.
Поняття векторів, їх види, лінійна залежність, коллінеарність і компланарність, визначення координат. Обчислення скалярних добутків. Приклади застосування векторів до задач мікроекономіки. Прямокутна декартова система координат на площині та у просторі.
- 309. Векторная алгебра
Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.
- 310. Векторная алгебра
Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.
Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
Вивчення вектора, як одного із фундаментальних понять сучасної математики. Доведення відповідних теорем, щодо визначення векторів. Вимоги до операції віднімання векторів, та його множення на число. Поняття про аксіоматичний метод. Аксіоми та теореми.
Сущность построения проекции вектора на ось. Определение расстояний от точки до прямой, до плоскости, между скрещивающимися прямыми. Нахождение угла между прямыми, прямой и плоскостью, плоскостями. Решение метрических задач векторно-координатным методом.
- 315. Векторное поле
Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.
Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.
- 318. Векторные функции
Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.
- 319. Векторный анализ
Криволинейные интегралы 1-го рода. Вычисление общей массы всей системы методом общей суммы. Главные особенности интегральной суммы. Проекция длины кривой на ось. Поиск координат центра тяжести дуги циклоиды. Поле сил, воздействующих на тело массы.
- 320. Векторный анализ
Криволинейные интегралы 1 и 2-го рода: механический смысл, свойства, формулы вычисления. Общий вид уравнения прямой, проходящей через две произвольные точки. Определение координат центра тяжести дуги циклоиды. Формула Грина и объяснение ее смысла.
Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.
Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).
Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.
Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.
Появление и особенности Великой теоремы Ферма, первые варианты доказательства. Влияние Второй мировой войны на изобретения логарифмической линейки. Характеристика метода Колывагина–Флаха, его использование. Математический анализ гипотезы Таниямы–Шимуры.
Узкая и широкая формулировка теоремы Ферма. Опровержение гипотезы Эйлера и открытой гипотезы Ландера-Паркина-Селфриджа. Проблема доказательства теоремы Ферма. Теорема Ферма в культуре и искусстве. Рассмотрение проектов доказательств теоремы Ферма.
Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.
Гипатия Александрийская - представительница древнегреческой философии и математики. Вклад Софии Ковалевской в развитие математической науки. Динамика появления женщин-математиков. Первая в мире женщина–программист Ада Августа Лавлейс, ее вклад в науку.