Анализ алгоритмических процессов, предписаний алгоритмического типа и алгоритмов в решении проблемы преподавания. Описание основных характеристик алгоритмов: детерминированности, массовости и результативности. Способы описания алгоритмических процессов.
Основные свойства машины Тьюринга, отличающие ее от исполнителя – человека. Понятие конфигураций машины Тьюринга. Основные свойства операции композиции. Примеры вычислимых функций по Тьюрингу. Операция ветвления и зацикливания, их ключевые особенности.
Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.
Реалізація схем методу скінченних елементів для задач математичної фізики, зв’язаних з оператором Лапласа. Побудова передобумовлювача в ітераційних методах для знаходження рішення систем рівнянь, апроксимуючих задачу Дирихле в областях складної форми.
Анализ понятия и сущности алгоритма. Классификация алгоритмов в окружающем информационном пространстве для развития логического и алгоритмического мышления. Характеристика алгоритмизации в информатике как способа классификации алгоритмов окружающего мира.
Примеры алгоритмов как некоторых процедур, однозначно приводящих к результату. Основные требования к алгоритмам. Алгоритмически неразрешимые задачи. Условия выполнения свойства сводимости. Три типа сложности задач. Четыре категории чисел по Колмогорову.
Проведение исследования задачи основной нахождения интерполяционных коэффициентов Лагранжа при равномерном распределении узлов интерполяции. Добавление выражений в формулу базисного полинома и вынесение за знаки перемножения в числителе и знаменателе.
Анализ данных с помощью определения структуры кластера. Изучение алгоритма поиска центра Минковского для кластеризации по методу к-средних для различных значений степени. Постановка задачи кластеризации. Описание алгоритма с использованием метрики.
Укладка деревьев минимальной длины и ширины. Реализация алгоритма укладки дерева минимальной ширины и длины. Определение укладки ориентированного дерева, характеристика основных способов нахождения длины и ширины укладки дерева. Метки вершин дерева.
Представление булевых функций в совершенной дизъюнктивной нормальной форме. Многоступенчатое склеивание. Минимизация булевых функций. Карта Карно-Вейча для четырех переменных. Метод Квайна и Мак-Класки. Диаграммы Вейча, метод неопределенных коэффициентов.
- 311. Алгоритмы на графах
Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
Классификация моделей релаксации клики. Алгоритмы нахождения плотных подграфов. Применение теории графов для описания фондового рынка. Реализация алгоритмов и их сравнение. Модифицированный Degree Decomposition Algorithm. GRASP алгоритм поиска квази-клик.
Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
- 314. Алгоритмы путей
Нахождение по заданной матрице весов графа величины минимального пути по алгоритму Дейкстры, величины максимального пути. Нахождение минимального пути по алгоритму Беллмана-Мура между вершинами. Определение максимального потока по заданной матрице.
Формальное содержание и принципы разрешения задачи размещения. Критерий минимума суммарной длины соединений и определение их длины. Типы используемых алгоритмов: конструктивные, итерационные, непрерывно-дискретные, математического программирования.
Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.
Изучение понятия и разновидностей графов. Явление изоморфизма и гомеоморфизма. Пути и циклы. Дерево или произвольно-связный граф без циклов. Цикломатическое число и фундаментальные циклы. Независимые множества и покрытия. Алгоритм Дейкстры, Краскала.
Приведение управляемых номинальных систем и систем при действии возмущений в скользящий режим с уменьшением энергозатрат на управление в результате отключения управления на конечных интервалах времени по условию без потерь в качестве управления.
Решение задачи оптимального размещения компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Анализ свойств минимальных путей в нагруженном орграфе. Построение матрицы инцидентности для орграфа.
Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
Синтез управления для приведения системы в скользящий режим с инвариантностью в нем к неопределенным параметрическим и внешним возмущениям, а также управлений в системах с линейными объектами, обеспечивающих экспоненциальное уменьшение евклидовой нормы.
Численный метод интегрирования вдоль характеристик, который эффективно вычисляет профиль коэффициента Ламе по заданному сейсмическому сигналу. Рекуррентные соотношения, позволяющие восстановить волновые поля смещений упругого пористого тела и жидкости.
Основні положення та означення теорії нормальних алгоритмів А.А. Маркова. Поняття алфавіту нормального алгорифму та підстановки. Означення нормального алгорифму Маркова. Загальні риси всіх алгоритмічних моделей. Еквівалентність алгоритмічних моделей.
Анализ формалистских и интуиционистских элементов в теории А. Бадью показывает, что она распадается на две независимые части, одна из которых относится к формализму, а другая - к интуиционизму (теория субъекта). Концептуализация этических ограничений.
- 325. Аликвотные дроби
Характеристика истории происхождения аликвотных дробей и их применения в Древнем Египте. Примеры применения аликвотных дробей в жизни. Описание формул аликвотных дробей. Анализ гипотезы Эрдёша-Страуса. Примеры решения задач с помощью аликвотных дробей.
Конструкції над ґратками, за допомогою яких можна отримати ґратку нормальних дільників вінцевого добутку, виходячи з будови аналогічних ґраток його компонент. Поняття амальгамованого об'єднання та розшарованого добутку частково впорядкованих множин.
Численное исследование амплитуды колебаний заглубленного источника в зависимости от частоты и скорости движения в изотропных средах, таких как однослойное полупространство, двухслойный пакет с жестко фиксированным и механически свободным основанием.
Виды моделирования: непрерывное и дискретное, последовательное и параллельное, с синхронной и асинхронной динамикой. Задача роста поверхности и направленной перколяции. Основные подходы к реализации оптимистической схемы и принципы ее моделирования.
А.П. Котельников как один из создателей винтового исчисления, внесший значительный вклад в неевклидову механику, а также неевклидову геометрию. Общая характеристика редакционно-издательской деятельности русского и советского математика и механика.
Число сообществ, модулярность и коэффициент кластеризации как основные структурные характеристики, которые используются в сетевом анализе. Специфические особенности структура сообществ в ближайшем окружении пользователей социальной сети "Вконтакте".
