Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.
Поняття асоціативного групоїда багатомісних операцій. Аналіз оноїдів з оборотними елементами. Метод описання класів алгебр розкладів поліагруп. Розклади багатомісних операцій. Класифікації функційних рівнянь з точністю до парастрофної рівносильності.
Сравнительный анализ распространенных экспертных методов измерения алгоритмов определения весовых коэффициентов: ранжирования, одинарного и двойного попарного сопоставления. Анализ их сложности и условия применения. Используемые показатели качества.
Вивчення багатомісних асоціатів, напівгруп (відповідних групоїдів) та їх узагальнень. Встановлення критеріїв оборотності елементів в асоціатах та опис аксіоматики майже поліагруп. Вивчення властивостей схрещеної ізотопії та схрещених ізоморфів поліагруп.
- 395. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.
Описание базовых геометрических фигур как основ архитектурных форм. Правильный круг и пирамида как исторические прототипы геометрических и архитектурных форм. Геометрические формы в проектах советских авангардистов. Комбинирование архитектурных форм.
Модель В.М. Глушкова как конкретизация модели системы управления применительно к дискретным преобразователям информации, принципы ее расширения. Системы с разветвленными и циклическими алгоритмами управления. Структурная модель академика Ю.Ф. Мухопада.
Переменные и функции алгебры логики, обзор ее основных теорем о положений. Реализация импульсно-потенциальных логических элементов Троичные коды и система счисления. Логические элементы дискретной автоматики. Принцип двойственности (правило де Моргана).
Теорема Байеса как логическая основа пересмотра суждений в зависимости от действительно происходящих событий. Возможности байесовского подхода для анализа как средства построения скоринговой системы. Нахождение оценок любых рисков. Точность прогноза.
Балансовый метод в статистическом изучении трудовых показателей. Разработка межотраслевого баланса производства и распределения общественного продукта, его использование для анализа социалистического воспроизводства и планирования народного хозяйства.
Анализ нестратегических игр. Главное отличие кооперативной игры от обычной. Цели создания большой коалиции и индивидуальной рациональности. Способы объединения и координации действий участников. Определение правил поведения и расчётов между игроками.
- 403. Бесконечно малые и бесконечно большие величины. Теоремы о пределах. Раскрытие неопределенностей
Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
Определение бесконечно малой функции, ее основные свойства. Соотношение между бесконечно малыми и бесконечно большими функциями. Доказательство теорем о пределах. Понятие и вычисление односторонних пределов. Типы неопределенностей и способы их раскрытия.
Изучение связи противоречия с идеей бесконечного числа в математике. Вычисление пределов, асимптотические обозначения в уравнениях и эквивалентные бесконечно малые функции. Использование выражение, содержащее асимптотические равенства теории алгоритмов.
Основные теоремы о пределах, признаки их существования, связь с бесконечно малой функцией. Теорема об алгебраической сумме конечного числа БМФ. Методы вычисления пределов выражений, содержащих тригонометрические функции, и числовых последовательностей.
Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.
Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).
Цель работы – проанализировать натуральные числа с математической, философской, магической точек зрения. Частота появления натуральных чисел в математических задачах, головоломках, в различных литературных жанрах. Различные способы счета в древности.
Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.
Определение симметричных и кососимметричных билинейных функций. Закон изменения матрицы билинейной формы. Определение квадратичного функционала, его матричный вид. Основные методы приведения к канонической форме. Нормальный вид квадратичного функционала.
Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
- 414. Бинарные отношения
Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
- 415. Бинарные отношения
Бинарные отношения в школьном курсе математики. Отношение как одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении. Бинарные отношения: рефлексивность, симметричность, транзитивность, параллельность.
- 416. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
Случайная величина, распределенная по биномиальному закону. Расчет вероятности того, что случайная величина примет определенное значение по формуле Бернулли. Составление ряда распределения величины, распределенной по биномиальному закону с параметрами.
Математический анализ случайных событий и связанных с ними случайных величин. Характеристика и распределение случайных величин. Функция распределения и плотность распределения. Основные свойства, аппроксимация и применение биномиального распределения.
Понятие о биномиальном распределении в лесном хозяйстве. Биномиальное распределение как проявление событий с двумя исходами. Распределение Пуассона как частный случай биномиального. Вычисление выравнивающих частот для данных способов распределения.
Жизнь и профессиональная деятельность выдающегося математика Андрея Николаевича Колмогорова. Анализ теорем и аксиом элементарной теории вероятностей, понятие непрерывности и бесконечности пространства. Решение линейных уравнений в конечных разностях.