Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
- 272. Бинарные отношения
Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
- 273. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
Случайная величина, распределенная по биномиальному закону. Расчет вероятности того, что случайная величина примет определенное значение по формуле Бернулли. Составление ряда распределения величины, распределенной по биномиальному закону с параметрами.
Повторения Бернулли как повторные независимые испытания, этапы их реализации и предъявляемые требования, изучение примеров. Формула Пуассона, ее выведение. Понятие и содержание случайной величины. Числовые характеристики дискретной случайной величины.
Влияние К.Ф. Гаусса на Лобачевского во время обучения в университете. Получение степени магистра и избрание на должность ректора. Математические достижения великого ученого. Характеристика трудов и книг Лобачевского в области алгебры и геометрии.
Знакомство с алгоритмами проведения арифметических и алгебраических операций, рассмотрение тригонометрических и гиперболических функций. Биплексные числовые системы как гиперкомплексные числовые системы второго порядка с единичным элементом в базисе.
Порядок и подходы к построению нового варианта логики аргументации. Принципы и анализ эффективности метода аналитических таблиц для предложенного варианта логики аргументации для обнаружения тавтологий, с использованием связи с теорией бирешеток.
Узагальнення поняття Шубертового багатовиду та порівняння властивостей бішубертівського багатовиду. Опис всіх його незвідних компонентів, їхня раціональність, кількість і розмірність. Особливості рівняння та перетини незвідних компонент в Грассманніані.
Понятие блуждания, нахождение биномиальных коэффициентов. История развития фигурных чисел, характеристика их основных видов. Вычисление многоугольных чисел и проверка свойств фигурных чисел. Исследования Пьера Ферма, специфика пирамидальных чисел.
- 281. Булева алгебра
Предмет математической логики. Калькуляция высказываний высказывание. Сущность эквивалентности конъюнкции. Алгебра логических значений. Выражение логической операции с помощью отрицания и импликации. Применение булевой алгебры в математической логике.
- 282. Булева алгебра
Математическая логика как современная форма формальной логики, применяющей математические методы для исследования своего предмета. Теоретические аспекты понятия "вывод". Калькуляция высказываний и алгебра логических значений, импликация и эквивалентность.
- 283. Булева алгебра
Ознакомление с историей зарождения и особенностями булевой алгебры. Характеристика специфики совершенных дизъюнктивной и конъюнктивной нормальных форм. Рассмотрение сущности математической логики. Основные теории вероятности в функциональном анализе.
Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.
Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.
Анализ роли человека в создании машин, которые умеют решать логические задачи. Характеристика предмета, целей и задач математической логики. Алгебра высказываний как раздел математической логики, в котором изучаются логические операции над высказываниями.
Развитие математической логики. Предмет калькуляции высказываний и ее операции: отрицание и конъюнкция, дизъюнкция, импликация, эквивалентность. Логические формулы и логические элементы компьютера. Функции триггера, сумматора, переключательной схемы.
- 288. Булевы функции
Существенная и фиктивная переменная функции. Наборы значений, которые принимают переменные. Функция, полученная с помощью подстановок функций друг в друга на места переменных, а также с помощью переименования этих переменных. Выражение суперпозиции.
- 289. Бутылка Клейна
Научная деятельность Ф. Клейна, его биография. Конструирование бутылки Клейна. Первое доказательство непротиворечивости геометрии Лобачевского как одно из важнейших достижений математика. Связь бутылки Клейна с лентой Мёбиуса и проективной плоскостью.
- 290. В мире процентов
История процента и знака процента. Формулы для решения задач на проценты. Основные типы задач на проценты, методы и примеры их решения. Процент в повседневной жизни. Подборка задач в помощь учащимся 9-ых классов для подготовки к экзамену по математике.
Основное утверждение и средства к доказательству первой и второй частей Великой теоремы Ферма, общее замечание к ней. Решение основного утверждения в первой части и гипотетическое доказательство для второй части, полученные элементарным методом.
Изучение закономерностей выбора путей решения задач. Требования к тестам, оценка их способности служить цели измерения, методы повышения валидности. Значение интуиции, знаний и опыта при достижении результата. Установление готовности к производству работ.
Ознакомление с задачами, решаемыми с помощью вспомогательных вариационных задач. Рассмотрение процесса решения задачи о критических оборотах вала. Исследование и анализ зависимости параметра квадратичной вариационной задачи от числа краевых условий.
- 294. Введение в анализ
Сущность числовой последовательности, анализ свойств и функций. Геометрическая интерпретация предела последовательности. Теорема сравнения. Основные характеристики функции. Базовые теоремы о пределах. Раскрытие неопределенностей. Замечательные пределы.
Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
Нахождение пределов функций, левого и правого пределов в точке, скачка функции в каждой точке разрыва, точки разрыва функции, если они существуют, значения функции при стремлении аргумента к каждому из данных значений. Построение схематического чертежа.
Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.
Определение числовой последовательности. Связь натурального и десятичного логарифмов. Предел функции при стремлении аргумента к бесконечности. Свойства и сравнение бесконечно малых функций. Тригонометрическая форма числа. Действия с комплексными числами.
Случай, случайные явления, события, величины, их законы, их свойства и операции над ними. Комплексное изучение истории возникновения, становления и развития теории вероятностей. Два знаменитых вопроса шевалье де Мере. Закон больших чисел в форме Бернулли.
Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.