Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.
Исследование достижений Рене Декарта - французского математика и философа. Определение и анализ сущности вектора – направленного отрезка прямой и геометрической абстракции векторной величины. Ознакомление с особенностями декартовой системы координат.
- 483. Векторное поле
Геометрические характеристики векторного поля. Дифференциальные операции 1 и 2 порядка, оператор Гамильтона. Виды векторных полей. Интеграл от векторной функции вдоль кривой. Работа и свойства потенциального поля. Примеры восстановления потенциала.
Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.
- 487. Векторные функции
Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.
- 488. Векторный анализ
Криволинейные интегралы 1 и 2-го рода: механический смысл, свойства, формулы вычисления. Общий вид уравнения прямой, проходящей через две произвольные точки. Определение координат центра тяжести дуги циклоиды. Формула Грина и объяснение ее смысла.
- 489. Векторный анализ
Криволинейные интегралы 1-го рода. Вычисление общей массы всей системы методом общей суммы. Главные особенности интегральной суммы. Проекция длины кривой на ось. Поиск координат центра тяжести дуги циклоиды. Поле сил, воздействующих на тело массы.
Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла.
Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.
Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).
Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
Определение понятия единичного и нулевого вектора. Рассмотрение коллинеарных векторов. Ознакомление с процессом геометрической проекции вектора на ось. Изучение декартовых прямоугольных координат вектора в пространстве. Анализ формул деления отрезка.
Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.
- 497. Велика теорема Ферма
Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.
Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.
Узкая и широкая формулировка теоремы Ферма. Опровержение гипотезы Эйлера и открытой гипотезы Ландера-Паркина-Селфриджа. Проблема доказательства теоремы Ферма. Теорема Ферма в культуре и искусстве. Рассмотрение проектов доказательств теоремы Ферма.
Гипатия Александрийская - представительница древнегреческой философии и математики. Вклад Софии Ковалевской в развитие математической науки. Динамика появления женщин-математиков. Первая в мире женщина–программист Ада Августа Лавлейс, ее вклад в науку.
- 501. Великие математики
Архимед и его роль в развитии математики. Мудрые повествования о древнегреческом математике Диофанте из Александрии. Мифологизация и реальность в биографии выдающегося математика древности Пифагора. Способ определения высоты пирамиды по Фалесу.
- 502. Великие математики
Теорема Пифагора. Основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов в главном труде Евклида "Начала". Постулаты Евклида, теорема Виета. Арифмометр Лейбница, формула Эйлера.
Знакомств с краткой биографией Р. Декарта. Особенности создания аналитической геометрии. Рассмотрение методов решения алгебраических уравнений. Анализ доказательства существования Бога от Р. Декарта. Общая характеристика книги "Рассуждение о методе".
Архимед и его формула для объёма шара. Теорема Ферма – Эйлера о представлении простых чисел в виде суммы двух квадратов. Философ и математик Лагранж и его теорема о четырех квадратах. Математическая деятельность Гаусса – открытие о семнадцатиугольнике.
Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.
Изучение жизненного пути и научной деятельности Л. Эйлера – одного из величайших геометров мира, который в качестве члена Петербургской и Берлинской Академий наук содействовал развитию математических наук и распространению физико-математических знаний.
Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
Создание чувственной основы, формирование представлений о размерах предметов. Свойства скалярных и векторных величин. Логика процесса измерения. Ознакомление дошкольников с идеей измерения посредством промежуточных мер и принципом измерения величин.
Понятие теории вероятности, её формулы и правила. Применение теории вероятности в различных сферах жизнедеятельности человека. Определение вероятности получения положительной оценки при сдаче экзамена по математике путем угадывания правильного ответа.
Описание нового подхода к формированию геометрических моделей объектов сложной формы и формализации исходных данных, обеспечивающих наперед заданную точность моделирования и гладкость обводов поверхностей. Оценка погрешностей моделирования формы.