Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.
Анализ аппроксимации как процесса приближения функции f(x) к более простой функции. Анализ интерполяции как процесса нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Определение интерполяционного полинома.
Выведение формул, аппроксимирующих функцию распределения простых чисел pi(x). Функция s(x), которая хорошо аппроксимирует функцию pi(x) на всем ряде натуральных чисел. Анализ таблицы значений для x, не превосходящих 1022 для разности s(x) - pi(x).
Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.
Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
Методика построения аппроксимирующей функции, которая наилучшим образом сглаживает экспериментальную зависимость, заданной таблично. Замена громоздкого табличного способа представления данных эксперимента как одна из важнейших задач аппроксимации.
- 337. Аппроксимация экспериментальных распределений случайных чисел стандартными статистическими законами
Метод моментов аппроксимации экспериментальных распределений стандартными статистическими законами. Схема эмпирической и гипотетической функции распределения. Метод моментов для экспоненциального закона. Функция плотности экспоненциального закона.
Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).
Точна швидкість чезарівського підсумовування м.с. додатного, від'ємного та змішаного порядків кратних рядів Фур’є. Нові асимптотична та абсолютна оцінки найменших сталих в нерівностях Уітні для простору L(0,1), що покращують відомі оцінки такого типу.
Вивчення апроксимативно транзитивних дій. Аналіз властивості, яку кличуть кумедним рангом один. Оцінка її незалежності від вибору міри в межах одного класу. Обґрунтування теореми про індуковані дії. Загальні критерії апроксимативної транзитивності.
Дослідження групи всіх борелівських автоморфізмів стандартного борелівського простору і групи всіх гомеоморфізмів канторівської множини. Аналіз топологічних властивостей цих груп та їх підмножин, які визначаються різними динамічними характеристиками.
Вплив дискретних диференціальних характеристик на точність наближення дискретного методу найменших квадратів і розробка алгоритму апроксимації на цій основі. Програмне забезпечення і головні етапи впровадження методу у практику обробки емпіричних даних.
Апроксимація на вертикальних прямих ряду Діріхле з нульовою абсцисою абсолютної збіжності, швидкість збіжності часткових сум. Аналітичні функції з невід'ємними тейлоровими коефіцієнтами. Швидкість прямування до нулів сум тейлорового розвинення функції.
Точні значення похибки апроксимації. Обчислення поперечників множин послідовностей. Похибки оптимального відновлення, оптимальні алгоритми відновлення значень лінійних функціоналів. Знаходження точної константи в дискретних нерівностях типу Колмогорова.
Екстремальні задачі дискретної апроксимації. Порядок знаходження точної константи в нерівності типу Колмогорова для оцінки в рівномірній метриці норми різниці послідовності через норму самої послідовності та норму її різниці будь-якого порядку.
- 347. Аристотель
Краткая биографическая справка из жизни Аристотеля. Логика как наука о способах доказательств и опровержений. Теоретическая и практическая философия. Главные задачи логики. Произведения Аристотеля "Категории", "Топика" и "О софистических опровержениях".
- 348. Арифметика Диофанта
Диофант как великий древнегреческий математик, исследование известных биографических данных данного ученого. "Арифметика" Диофанта как сборник задач, каждая из которых снабжена решением (или несколькими способами решения) и необходимыми пояснениями.
Психолого-педагогические, исторические основы построения факультативных занятий в средней школе. Развитие познавательных интересов учащихся. Анализ содержания учебной литературы по теме "комплексные числа". Методические рекомендации по проведению занятий.
- 350. Арифметика фигур
Основы арифметики трех лучей, выходящих из одной точки. Свойства произведения двух точек, их графическое доказательство. Коммутативность, ассоциативность и дистрибутивность умножения фигур. Деление фигур самих на себя. Мультипликативная арифметика.
Арифметическая прогрессия - ряд чисел, в котором каждое число, начиная со второго, равняется предыдущему, сложенному с одним и тем же постоянным числом. Понятие геометрической прогрессии. Формулы суммы первых членов. Характеристическое свойство.
Понятие арифметической прогрессии. Место арифметической и геометрической прогрессии в нашей жизни. Ученые, которые положили начало изучению прогрессий. Теоретические и практические основы решения задач. Примеры существования прогрессий в нашей жизни.
- 353. Арифметические вычисления, системы счисления, способ записи чисел и метрология в древнем Египте
Развитие математики в Древнем Египте в период с III века до н.э. Проведение умножения египтянами с помощью сочетания удвоений и сложений. Использование иероглифов для изображения знаков сложения или вычитания. Древнеегипетская нумерация (запись чисел).
Правила выполнения арифметических действий с десятичными и обыкновенными дробями. Подготовка учащихся к усвоению правил действий с отрицательными числами. Оформление доски, способствующее более интересному проведению урока (эскиз к началу отрывка).
Последовательность и отличия арифметических действий с числами в различных системах счисления: двоичной, десятичной и шестнадцатеричной. Примеры сложения, вычитания, умножения и деления на основе переходов между разрядными слагаемыми многозначных чисел.
Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.
Понятие и сущность функции в математике, характеристика основной теоремы арифметики. Отличительные черты мультипликативной и аддитивной арифметической функции. Определение целой и дробной части числа, описание дзета-функция Римана и функции Чебышева.
Визначення поняття та видів арифметичної прогресії. Вивчення її властивостей. Наведення формули n-го члена арифметичної прогресії та формули суми перших n членів арифметичної прогресії. Знаходження різниці наступного та попереднього членів послідовності.
Теоретичні відомості числових послідовностей. Арифметична прогресія та її властивості. Формула суми перших n членів арифметичної прогресії. Геометрична прогресія і її властивості. Розв'язування задач, пов'язаних з арифметичною і геометричною прогресіями.
- 360. Архимед
Архимед как вершина научной мысли древнего мира. Годы обучения математика. Метод расчета площади параболического сегмента. Первый закон гидростатики. Сущность теории пяти механизмов. Изобретение бесконечного винта. Система зеркал, водонапорная машина.