Анализ нестратегических игр. Главное отличие кооперативной игры от обычной. Цели создания большой коалиции и индивидуальной рациональности. Способы объединения и координации действий участников. Определение правил поведения и расчётов между игроками.
- 452. Бесконечно малые и бесконечно большие величины. Теоремы о пределах. Раскрытие неопределенностей
Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
Определение бесконечно малой функции, ее основные свойства. Соотношение между бесконечно малыми и бесконечно большими функциями. Доказательство теорем о пределах. Понятие и вычисление односторонних пределов. Типы неопределенностей и способы их раскрытия.
Основные теоремы о пределах, признаки их существования, связь с бесконечно малой функцией. Теорема об алгебраической сумме конечного числа БМФ. Методы вычисления пределов выражений, содержащих тригонометрические функции, и числовых последовательностей.
Изучение связи противоречия с идеей бесконечного числа в математике. Вычисление пределов, асимптотические обозначения в уравнениях и эквивалентные бесконечно малые функции. Использование выражение, содержащее асимптотические равенства теории алгоритмов.
Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.
Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).
Цель работы – проанализировать натуральные числа с математической, философской, магической точек зрения. Частота появления натуральных чисел в математических задачах, головоломках, в различных литературных жанрах. Различные способы счета в древности.
Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.
Определение симметричных и кососимметричных билинейных функций. Закон изменения матрицы билинейной формы. Определение квадратичного функционала, его матричный вид. Основные методы приведения к канонической форме. Нормальный вид квадратичного функционала.
Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
- 463. Бинарные отношения
Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
- 464. Бинарные отношения
Бинарные отношения в школьном курсе математики. Отношение как одна из форм всеобщей взаимосвязи всех предметов, явлений, процессов в природе, обществе и мышлении. Бинарные отношения: рефлексивность, симметричность, транзитивность, параллельность.
- 465. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
Случайная величина, распределенная по биномиальному закону. Расчет вероятности того, что случайная величина примет определенное значение по формуле Бернулли. Составление ряда распределения величины, распределенной по биномиальному закону с параметрами.
Математический анализ случайных событий и связанных с ними случайных величин. Характеристика и распределение случайных величин. Функция распределения и плотность распределения. Основные свойства, аппроксимация и применение биномиального распределения.
Понятие о биномиальном распределении в лесном хозяйстве. Биномиальное распределение как проявление событий с двумя исходами. Распределение Пуассона как частный случай биномиального. Вычисление выравнивающих частот для данных способов распределения.
Жизнь и профессиональная деятельность выдающегося математика Андрея Николаевича Колмогорова. Анализ теорем и аксиом элементарной теории вероятностей, понятие непрерывности и бесконечности пространства. Решение линейных уравнений в конечных разностях.
Изучение биографии знаменитого французского математика и физика - Ж.Б. Фурье. Теорема о числе действительных корней алгебраического уравнения. Теория распространения тепла в твердом теле. Анализ интеграла, коэффициентов, преобразования и метода Фурье.
Труд Аполлония Пергского о конических сечениях, его известная задача о нахождении круга и усовершенствования системы счисления. Описание окружности Аполлония и его математических трудов. Увлечение математика астрономией, переводы работ Аполлония учеными.
Краткие биографические данные о жизни математика Луки Пачоли. Влияние писателя, музыканта и архитектора – Леона Баттиста Альберти, на работы ученого. Публикация "Трактата о счетах и записях". Работа математика над книгой "Божественная пропорция".
Знакомство с алгоритмами проведения арифметических и алгебраических операций, рассмотрение тригонометрических и гиперболических функций. Биплексные числовые системы как гиперкомплексные числовые системы второго порядка с единичным элементом в базисе.
Порядок и подходы к построению нового варианта логики аргументации. Принципы и анализ эффективности метода аналитических таблиц для предложенного варианта логики аргументации для обнаружения тавтологий, с использованием связи с теорией бирешеток.
Анализ последовательности Фейгенбаума как одного из типичных сценариев перехода от порядка к хаосу. Анализ механизмов этого процесса. Бифуркации и хаос в детерминированных системах. Теория бифуркаций и катастроф. Динамический (детерминированный) хаос.
Узагальнення поняття Шубертового багатовиду та порівняння властивостей бішубертівського багатовиду. Опис всіх його незвідних компонентів, їхня раціональність, кількість і розмірність. Особливості рівняння та перетини незвідних компонент в Грассманніані.
Древние приспособления для счета. Вклад Паскаля в развитие математики и физики. Устройство и принцип работы счетной машины Паскаля. Создание арифмометра Лейбницем. Механический калькулятор Колмара, арифмометр Однера. Электромеханические счетные машины.
Биография и основные открытия Блеза Паскаля. Изучение роли понятия треугольника Паскаля при решении задач, его свойств, истории и построения. Применение разнообразных методов, рациональных способов решения задач с применением треугольника Паскаля.
- 479. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
Рассмотрены фреймы Парсеваля-Стеклова в пространстве из бесконечного числа элементов с заданными нормами. Приведена конструкция блочных фреймов в пространстве. Условия на наборы положительных чисел, которые являются нормами фреймов Парсеваля-Стеклова.
