Разработка программы для определения устойчивости линейной стационарной системы при помощи алгебраического критерия устойчивости Гурвица. Анализ линейной стационарной динамической системы на устойчивость. Код программы, основные этапы ее работы.
Способы решения уравнений, содержащих модуль. Использование геометрической интерпритации модуля для решения уравнений. Графики простейших функций, содержащих знак абсолютной величины. Доказательство теорем, определение, решение нестандартных уравнений.
Основні дії з числовими та буквеними величинами, розв’язання рівнянь, пов’язаних з ними. Надання конкретних числових значень буквеним величинам. Закони додавання і множення. Особливості алгоритму ділення многочленів. Теореми (про дробові та цілі корені).
Дослідження умов асимптотичної стійкості в середньому та середньому квадратичному розв'язках лінійних різницевих рівнянь з марковськими коефіцієнтами. Одержання достатніх умов асимптотичної стійкості за допомогою функцій Ляпунова з матричним аргументом.
Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
Розробка проекту по удосконаленню математичних моделей в теорії нейронної асоціативної пам'яті і впровадженню нової архітектури і алгоритмів вчення асоціативних нейромереж. Опис представлення матриць за допомогою точок різноманіття спектрального аналізу.
Властивості груп розкладу нормувань псевдоглобального поля. Алгебраїчні тори та скінченні модулі над псевдоглобальними полями. Когомологiї алгебраїчних многовидiв над псевдоскiнченними, псевдоглобальними та багатовимiрними загальними локальними полями.
- 158. Алгебраїчні рівняння
Поняття рівняння як рівності, яка містить перемінні величини, виконується лише при деяких значеннях цим перемінних. Головні властивості еквівалентних, рівносильних рівнянь. Сутність формули Вієтта, її застосування. Особливості властивостей дискримінанта.
Розв’язання кубічного алгебраїчного рівняння. Математична заміна підкореневого виразу. Метод Феррарі для рівнянь четвертого степеня. Виділення повного квадрата під радикалами. Розклад нерівностей на множники. Рівняння з кубічними ірраціональностями.
Історія досліджень алгебраїчних та трансцендентних чисел. Викладення тверджень про трансцендентність деяких важливих математичних сталих. Корінь многочлена, коефіцієнтами якого є алгебраїчні числа. Відомі трансцендентні константи, перше їх використання.
Булеві функції алгебри та спеціальні форми їх зображення в алгебрах Буля і Жегалкіна: диз’юктивні та кон’юктивні нормальні форми, поліном Жегалкіна, повнота і замкненість. Послаблена функціональна повнота, реалізація схемами з функціональних елементів.
Алгебри бульових виразів і функцій, носії та сигнатури операцій, що їх визначають. Залежність породження різних формул від виду множини функціональних символів. Суттєва залежність функції від її змінних. Еквівалентні та канонічні формули і закони.
Теорія операторних просторів, алгебр та модулів. Критерій того, щоб гільбертіан був лівим операторним модулем над алгеброю обмежених операторів у ньому. Лінійні базиси алгебр, породжених скінченною кількістю ідемпотентів, сума яких пропорційна одиниці.
Опис скінченновимірних розв'язних алгебр Лі над алгебраїчно замкненим полем характеристики, в яких доповнювані всі одновимірні ідеали. Доведення розв'язності алгебр Лі, які допускають лінійний оператор непарного порядку без ненульових нерухомих точок.
Методи комбінаторної теорії груп та теорії алгебри Лі, а також теорії многочленів над скінченними полями. Історія виникнення ідеї побудови кілець Лі, асоційованих з абстрактними групами. Основні означення та результати щодо комутаторного числення.
Структура скінченовимірних алгебр, породжених лінійно пов'язаними ідемпотентами. Опис та аналіз двопараметричної множини коефіцієнтів, для яких алгебра, породжена четвіркою проекторів, лінійна комбінація яких дорівнює одиниці, має ненульові зображення.
Проведення всебічного системного аналізу алгебричних методів синтезу числових кодів з кільцевою структурою, комплексне обґрунтування їх переваг та недоліки. Розробка методики синтезу та обчислення повних сімей числових кодів з кільцевою структурою.
Продовження асоціативної бінарної операції, заданої на дискретному просторі S, до напівгрупової правотопологічної операції на просторі гіперпросторів включення та його підпросторах. Дослідження алгебраїчних та алгебро-топологічних властивостей напівгруп.
Определение класса алгебр лиевского типа, содержащих классы ассоциативных алгебр и алгебр Ли. Изучение структуры лиевских алгебр с размерностью, не превышающей трёх. Одномерные, многомерные и тривиальные пространственные градуировки алгебр лиевского типа.
Краткие биографические данные о жизни Фридриха Гаусса – немецкого математика, астронома и физика. Первые исследования метода решения систем линейных алгебраических уравнений. Понятие расширенной матрицей системы. Элементарные преобразования системы.
- 171. Алгоритм Дейкстры
Сущность и формальное определение алгоритма на графах, изобретенного нидерландским ученым Э. Дейкстрой. Принципы использования массивов чисел в простейшей реализации для хранения чисел. Анализ сложности алгоритма и доказательство его корректности.
- 172. Алгоритм комбинированного метода решения конечноэлементных задач с нелинейностями различного типа
Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.
Общая математическая модель функционирования системы физической защиты объектов на основе теории множеств. Использование композиции соответствий и метода анализа иерархий. Описание нечетких соответствий. Анализ композиции нечетких гиперграфов модели.
Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.
Симметрические многочлены - системы уравнений, в которые x и y входят одинаковым образом. Важнейшие примеры симметрических многочленов. Представление симметрического многочлена от x и y в виде многочлена от а = х + у и а = ху: доказательство теоремы.
Ориентированные, неориентированные и смешанные графы. Понятие деревьев и их основные свойства, связность вершин, ацикличность. Определения путей в графе. Решение задачи по определению числа путей заданной длины, составление компьютерной программы.
Определение вектора двойственных переменных. Нахождение кратчайшего пути на заданной транспортной сети. Порядок проверки на оптимальность. Правила записи двойственной задачи по отношению к исходной (1)-(5). Двойственные переменные в скалярной форме.
Рассмотрение задачи обеспечения инвариантности выходных переменных линейных динамических систем к внешним, неизмеряемым возмущениям в предположении, что условия согласования не выполнены. Синтез локальных обратных связей в классе разрывных функций.
Развертка поверхности методом триангуляции. Определение натуральных величин треугольников. Обозначение направляющего единичного вектора следа и его координаты. Расчет угла, который составляет вектор нормали плоскости, совмещение плоскости треугольника.
Алгоритм и основные этапы построения треугольной сети для заданной посредством контрольных точек поверхности NURBS. Сравнительная характеристика и анализ преимуществ использования двух распространенных методов подразбиений – Loop и Modified Butterfly.