Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.
Общая схема использования аксиоматического подхода при сопоставлении и выборе методов обработки данных. Задача вычисления удельного веса индексных факторов в мультипликативных индексных моделях. Характеристика основных методов вычисления вклада факторов.
Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.
- 154. Аксиомы планиметрии
Характеристика раздела геометрии, в котором изучаются изображения на поверхности. Точка и прямая как основные геометрические фигуры на плоскости. Проведение исследования аксиом принадлежности, расположения, измерения, откладывания и параллельности.
- 155. Аксиомы планиметрии
Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.
- 156. Аксиомы стереометрии
Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
пределение основных аксиом плоскости и точек пространства, принадлежащих и не принадлежащих плоскости. Исследование аксиом, характеризующих взаимодействие точек и прямых. Определение основных свойств отрезков и равенства треугольников в одной плоскости.
Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.
Рассмотрение видов аксонометрии и расположения оси прямоугольной изометрии. Определение натуральных и приведенных показателей искажения и масштаба изображения в прямоугольной изометрии. Приведение примеров выполнения фронтальной косоугольной диметрии.
Сущность аксонометрического проектирования, виды проекций. Определение величин углов между осями стандартных аксонометрических проекций. Прямоугольная изометрия и диметрия. Коэффициент искажения (вывод) и углы между осями; построение геометрических фигур.
Исследование достоинств и недостатков метода прямоугольного проецирования на несколько плоскостей проекций. Анализ прямоугольных изометрических и диметрических проекций. Изучение прямоугольных аксонометрических проекций и коэффициентов искажения.
Понятие и общая характеристика, а также отличительные свойства и признаки аксонометрической проекции как способа изображения геометрических предметов на чертеже при помощи параллельных проекций, их разновидности. Основные типы и формы искажений.
Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.
Особливості прямокутної ізометричної, диметричної та аксонометричної косокутної проекцій ГОСТ 2.317-69. Основні методи побудови прямокутної ізометрії плоских (піраміди, призми, конуса, циліндра та сфери) та складних фігур (циліндра і сфери з вирізом).
Розвиток логічного мислення, творчої активності та пізнавальної самостійності школярів. Методи навчання на уроках креслення у загальноосвітніх навчальних закладах. Підвищення якості графічної підготовки учнів. Різноманітність форм організації навчання.
Использование системы компьютерной математики Maple для контроля знаний, объяснения задач запредельной сложности и создания виртуальных лабораторий. Моделирование периодического процесса рядом Фурье. Особенности использования Maple в криптографии.
История Божественной гармонии. Первое упоминание деления отрезка в крайнем и среднем отношении. Применение закона гармонического деления в математике. Способ построения пентаграммы. Использование закономерности и связи золотого сечения и числа Фибоначчи.
- 168. Актуальность определения натуральной величины треугольника графическим и аналитическим методами
Особенности изучения студентами начертательной геометрии, значение данной дисциплины. Анализ разных методов определения натуральной величины треугольника: графического (геометрического построения) и аналитического (с использованием формул и вычислений).
Обзор взаимодействия зарядов при их относительном движении, течения в вихревой камере, осесимметричных взаимодействий N-тел на плоскости, многослойных вращающихся структур N-тел. Недостатки современной математики, препятствующие публикации решений задач.
Формирование у учащихся интереса к математике и применение разнообразных видов работ по предмету. Основы преподавания геометрии в условиях профильной дифференциации обучения. Технологии дидактики в процессе управления методической работой в школе.
Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.
Изучение фундаментальных проблем и взаимосвязей в следующих направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Исследования квантований алгебр, в конечных лиевых и нелиевых группах.
- 173. Актуарная математика
Изложение математических моделей и методов, которые используются для расчетов характеристик продолжительности жизни, разовых и периодических премий, страховых надбавок для различных видов страхования жизни и пенсионных схем. Значения функции Гаусса.
- 174. Алан Тьюринг
Роль Алана Тьюринга в истории информатики. Роль теории "логических вычисляющих машин" в научной деятельности ученого. Дружба с Кристофером Моркомом как основной стимул для развития своего интереса к науке. Биография и характеристика Алана Тьюринга.
- 175. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
Основні напрямки сучасної теорії зображень. Роль теорії матричних задач А.В. Ройтера. Обчислення матричної алгебри Aуслендера для однієї задачі про подібність пари матриць з деякими природними співвідношеннями. Формулювання класифікаційної теореми.
Исследование различных систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Характеристика и доказательства теорем Ферма-Эйлера, Адольфа Гурвица и приложение к ней (Фердинанда Георга Фробениуса).
Особенности алгебры над множеством логических функций и переменных, сигнатура которой содержит две бинарные операции. Характеристика полиномома Жегалкина. Основные аспекты его поиска. Анализ основ использования метода неопределенных коэффициентов.
- 179. Алгебра и геометрия
Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.
Индукция в геометрии и комбинаторике. Иррациональность значений тригонометрических функций. Квадратный трехчлен и фазовая плоскость. Комплексные числа и операции с ними. Треугольник Паскаля и его свойства. Пути и отображения комплексной плоскости.
