Метод ітерації для розв’язування нелінійних рівнянь

Використання методу ітерації для розв'язання систем нелінійних рівнянь. Зміни послідовного наближення x при різних варіантах взаємного розташування графіка і прямої. Положення ітерації при різних значеннях функції та похідної. Умови зациклювання ітерацій.

Рубрика Математика
Предмет Чисельні методи
Вид лекция
Язык украинский
Прислал(а) Міша
Дата добавления 06.06.2009
Размер файла 144,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.

    презентация [79,9 K], добавлен 06.02.2014

  • Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.

    курсовая работа [2,0 M], добавлен 30.11.2010

  • Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.

    презентация [310,1 K], добавлен 06.02.2014

  • Застосування методу Гауса (або методу послідовного виключення невідомих) для розв'язання систем лінійних рівнянь. Економний спосіб запису за допомогою компактної схеми Гауса. Алгоритм знаходження рангу матриці, метод Гауса з вибором головного елемента.

    курсовая работа [879,9 K], добавлен 02.10.2010

  • Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.

    контрольная работа [170,2 K], добавлен 16.05.2010

  • Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.

    лабораторная работа [412,4 K], добавлен 21.10.2014

  • Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.

    контрольная работа [179,7 K], добавлен 04.04.2012

  • Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.

    презентация [86,2 K], добавлен 06.02.2014

  • Умови та особливості використання модифікованого методу Ейлера для отримання другої похідної в кінцево-різницевій формі. Два обчислення функції за крок. Метод Ейлера-Коші як частковий випадок методу Рунге-Кутта. Метод четвертого порядку точності.

    презентация [171,0 K], добавлен 06.02.2014

  • Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.

    курсовая работа [229,8 K], добавлен 13.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.