- 1621. Метод прогонки
Анализ методов конечных элементов и разностных схем, решающих системы линейных алгебраических уравнений. Характеристика построения матрицы с доминирующей главной диагональю. Обоснование формул в системе краевой задачи для трехточечного уравнения.
- 1622. Метод проекций
Получение изображения объектов пространства на плоскости методом проецирования. Центральное проецирование как общий случай проецирования геометрических объектов на плоскость. Проецирование на три плоскости проекций. Проекции точки, прямой и плоскости.
- 1623. Метод прямоугольников
Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.
Методика определения максимального показателя Ляпунова решений системы дифференциальных уравнений. Анализ основных условий, которые гарантируют экспоненциальную устойчивость системы для любых нелинейных характеристик, лежащих в допустимых пределах.
Поиски оптимальных решений. Математические основы оптимизации вариационное исчисление и численные методы. Практическое использование математических методов оптимизации. Решение задачи графическим методом, с помощью Excel, классическим симплекс методом.
Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
- 1627. Метод сеток как способ решения дифференциальных уравнений модели процесса получения жидкого железа
Решение системы дифференциальных уравнений, описывающей процесс получения жидкого железа прямого восстановления в электродуговой сталеплавильной печи. Энергетические и химические процессы в расплаве и шлаке. Строение пространства моделирования системы.
Метод сеток решения уравнений параболического типа, оценка погрешности и сходимость метода сеток. Прогонка решения разностной задачи. Доказательство устойчивости разностной схемы. Разработка программного модуля, описание логики. Пример работы программы.
Розв’язання задачі опуклого програмування. Використання методу січних площин. Знаходження опуклих ліпшіцевих функцій рівномірної апроксимації півнеперервного зверху компактнозначного відображення скінченновимірним підпростором неперервних відображень.
Встановлення властивостей запропонованих схем методу скінчених елементів з вибором координатних функцій для обраних крайових задач (задачі Діріхле для рівняння Пуассона, бігармонічної задачі з крайовими умовами). Характеристика ітераційних методів.
Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
Пути повышения производительности позиционной компьютерной системы обработки целочисленных данных. Обзор метода табличной реализации арифметической операции умножения двух чисел, представленных для положительного и отрицательного числовых диапазонов.
Сущность и содержание исследуемого метода как процедуры эвристического типа, предваряющей использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума. Алгоритм Свенна, его этапы и назначение. Метод деления пополам.
Разработка программного модуля, ориентированного на нахождение минимума целевой функции по методу Фибоначчи на заданном отрезке, с заданным количеством вычислений и точностью. Тестирование результатов работы с помощью нескольких функций и их сравнение.
Разработка и реализация метода построения воспроизводимой и непредсказуемой последовательности перестановок, основанного на использовании для представления синдрома формируемой перестановки позиционной системы счисления с факториальным основанием.
Задача Коши для уравнения струны - математическая модель физической задачи о колебаниях настолько большой струны, что влияние ее концов уже не сказывается на колебаниях других точек струны. Два семейства вещественных характеристик уравнений струны.
Моделирование электромагнитных процессов в токоведущих элементах сети комплексов графитации. Методика частотной адаптации формулировок рекуррентных уравнений Максвелла постоянного тока для переменного тока. Применение freeware программного обеспечения.
Математическое моделирование нестационарных течений. Нахождение конвективного и диффузионного потоков вязкой жидкости. Разработка алгоритма искусственной сжимаемости. Анализ влияния порядка аппроксимации уравнений Навье-Стокса на точность вычислений.
Нахождение обратной матрицы с помощью метода жордановых исключений. Постановка задачи линейного программирования. Нахождение оптимального опорного плана. Определение двойственной задачи к общей задаче линейного программирования. Описание метода Штифеля.
- 1640. Метод Эйлера
Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.
Математическая модель диагностики сердечно-сосудистой системы в виде полинома – отрезка ряда Тейлора. Оценка эффективности информативных параметров и алгоритмов их расчета с помощью метода тождественности границ диапазона. Ширина адаптивного диапазона.
Дослідження основних елементів математичної логіки. Побудова таблиці істинності. Знаходження мінімального шляху без обмеження числа дуг. Особливість числення висловлень. Характеристика правила транзитивності, перерізу, імпортації та експортації.
Створення та обґрунтування методів, засобів математичного і комп'ютерного моделювання електромеханічних систем з орієнтацією на структурно-орієнтований підхід до організації програмних засобів. Використання інтегральних та інтегро-диференціальних моделей.
- 1644. Методи і моделі оперативного оцінювання станів складних об’єктів з використанням нечіткої логіки
Розширена нечітка мережева модель на основі нечіткої інтервальної інтегрованої кольорової мережі Петрі. Метод багатоетапного просторово розподіленого оперативного оцінювання станів складних об’єктів. Інструментальні засоби для вирішення прикладних задач.
Розробка підходу до розв’язання нелінійних крайових задач для тризв’язних двояко-шаруватих криволінійних областей, обмежених двома еквіпотенціальними лініями і непроникним контуром, що моделюють процеси витіснення, породжені системою двох свердловин.
Розв’язування систем алгебраїчних рівнянь. Алгоритм зведення систем поліноміально-нелінійних матричних рівнянь, що задані над множиною некомутуючих матриць, до задач на власні значення. Аналіз похибок заокруглення та ефективності побудованих алгоритмів.
Дослідження алгебраїчними методами поняття комплекту, а саме узагальнення поняття реляції та доведення ряду співвідношень логіки реляцій. Визначення формальної моделі подання асоціативних знань, а також аналіз механізму логічного виведення на них.
Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.
Аналіз одного з прикладних методів апроксимації функції – метода Течера-Тьюкі на предмет його придатності до використання в обчислювальних задачах, наявність переваг перед іншими методами. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле.
Викладення процесу побудови робастно збіжних лінійних методів синтезу моделей, що розв'язують задачу l1-ідентифікації й орієнтовані на керування динамічними об'єктами різної природи в умовах нестохастичної невизначеності, граничні властивості методів.