Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.
Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.
пределение основных аксиом плоскости и точек пространства, принадлежащих и не принадлежащих плоскости. Исследование аксиом, характеризующих взаимодействие точек и прямых. Определение основных свойств отрезков и равенства треугольников в одной плоскости.
Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.
Представлення Гільберта та його послідовників про математику як про формалізованої системи, об'єкти якої виражаються мовою символічної логіки. Розгляд математичних теорем і їх докази з охопленням сукупності всіх форм сучасної математичної теорії.
Исследование достоинств и недостатков метода прямоугольного проецирования на несколько плоскостей проекций. Анализ прямоугольных изометрических и диметрических проекций. Изучение прямоугольных аксонометрических проекций и коэффициентов искажения.
Понятие и общая характеристика, а также отличительные свойства и признаки аксонометрической проекции как способа изображения геометрических предметов на чертеже при помощи параллельных проекций, их разновидности. Основные типы и формы искажений.
Сущность аксонометрического проектирования, виды проекций. Определение величин углов между осями стандартных аксонометрических проекций. Прямоугольная изометрия и диметрия. Коэффициент искажения (вывод) и углы между осями; построение геометрических фигур.
Особливості прямокутної ізометричної, диметричної та аксонометричної косокутної проекцій ГОСТ 2.317-69. Основні методи побудови прямокутної ізометрії плоских (піраміди, призми, конуса, циліндра та сфери) та складних фігур (циліндра і сфери з вирізом).
Розвиток логічного мислення, творчої активності та пізнавальної самостійності школярів. Методи навчання на уроках креслення у загальноосвітніх навчальних закладах. Підвищення якості графічної підготовки учнів. Різноманітність форм організації навчання.
Использование системы компьютерной математики Maple для контроля знаний, объяснения задач запредельной сложности и создания виртуальных лабораторий. Моделирование периодического процесса рядом Фурье. Особенности использования Maple в криптографии.
Изучение сущности математического моделирования. Отличительные черты пассивного и активного эксперимента. Нахождение математической модели процесса напыления резисторов методом полного факторного эксперимента. Оценки коэффициентов уравнения регрессии.
- 104. Актуальность определения натуральной величины треугольника графическим и аналитическим методами
Особенности изучения студентами начертательной геометрии, значение данной дисциплины. Анализ разных методов определения натуральной величины треугольника: графического (геометрического построения) и аналитического (с использованием формул и вычислений).
Обзор взаимодействия зарядов при их относительном движении, течения в вихревой камере, осесимметричных взаимодействий N-тел на плоскости, многослойных вращающихся структур N-тел. Недостатки современной математики, препятствующие публикации решений задач.
- 106. Актуарная математика
Изложение математических моделей и методов, которые используются для расчетов характеристик продолжительности жизни, разовых и периодических премий, страховых надбавок для различных видов страхования жизни и пенсионных схем. Значения функции Гаусса.
- 107. Алан Тьюринг
Роль Алана Тьюринга в истории информатики. Роль теории "логических вычисляющих машин" в научной деятельности ученого. Дружба с Кристофером Моркомом как основной стимул для развития своего интереса к науке. Биография и характеристика Алана Тьюринга.
- 108. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
Исследование различных систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Характеристика и доказательства теорем Ферма-Эйлера, Адольфа Гурвица и приложение к ней (Фердинанда Георга Фробениуса).
Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.
Индукция в геометрии и комбинаторике. Иррациональность значений тригонометрических функций. Квадратный трехчлен и фазовая плоскость. Комплексные числа и операции с ними. Треугольник Паскаля и его свойства. Пути и отображения комплексной плоскости.
- 112. Алгебра логики
Возникновение логики. Элементы математической логики. Операции над логическими функциями. Булевы функции. Преобразование выражений булевых функций. Нахождение исходного выражения по его значениям. Применение в вычислительной технике и информатике.
- 113. Алгебра логики
Раздел математической логики, в котором изучаются логические операции над высказываниями. Аксиома - исходное положение теории, принимаемое в рамках данной теории истинным без требования доказательства. Логические операции и математические выражения.
- 114. Алгебра логики
Изучение специальной алгебры, занимающейся исчислением высказываний. Её роль в описании работы дискретных устройств. Элементарные функции алгебры логики. Использование двух приемов для построения произвольной. Предназначение эквивалентных соотношений.
- 115. Алгебра логики
Логика – наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений. Джордж Буль - создатель алгебры логики. Основные логические связки. Таблица истинности. Выполнимость формул.
- 116. Алгебра матриц
Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.
- 117. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
Линейные пространства прямоугольных и квадратных матриц, многочленов и непрерывных вещественных функций. Теоремы, применяемые к квадратным матрицам. Зависимость в линейных пространствах и линейная комбинация элементов. Линейно независимые подсистемы.
- 119. Алгебра множеств
Основное правило комбинаторики. Теория булевых функций, булева алгебра характеристических векторов и высказываний. Определение и способ задания булевых функций. Дизъюнктивные и конъюнктивные нормальные формы. Эйлеровы графы, сети, пути в орграфах.
- 120. Алгебра множеств
Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.