Априорные оценки решения в метрике С0 (S) уравнения типа Монжа-Ампера на сфере как двумерном многообразии в пространстве постоянной кривизны
Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 21.06.2018 |
Размер файла | 502,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа [192,3 K], добавлен 24.11.2009Пьер-Симон Лаплас - выдающийся французский математик, физик и астроном, один из создателей теории вероятностей. Уравнение Лапласа в двумерном пространстве. Способы трехмерного уравнения Лапласа. Особенности решения задачи Дирихле в круге методом Фурье.
курсовая работа [271,8 K], добавлен 14.06.2011Действие оператора точечной группы в двух- и трехмерном пространстве. Определение его порядка по матрице Система эквивалентных точек. Возможные порядки осей симметрии в кристаллографическом пространстве. Геометрическая интерпретация сложения операторов.
презентация [107,4 K], добавлен 23.09.2013Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа [605,8 K], добавлен 06.05.2012Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.
презентация [42,8 K], добавлен 17.09.2013Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа [1,1 M], добавлен 04.05.2010Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация [993,0 K], добавлен 12.04.2015Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа [440,4 K], добавлен 27.05.2015В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.
задача [10,4 K], добавлен 07.05.2003Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.
контрольная работа [79,6 K], добавлен 30.12.2010Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация [185,0 K], добавлен 17.09.2013Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.
курсовая работа [212,6 K], добавлен 11.12.2013Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.
отчет по практике [1,1 M], добавлен 15.11.2014Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.
курсовая работа [183,1 K], добавлен 25.11.2011