Арифметическая и геометрическая прогрессии в повседневной жизни

Понятие арифметической прогрессии. Место арифметической и геометрической прогрессии в нашей жизни. Ученые, которые положили начало изучению прогрессий. Теоретические и практические основы решения задач. Примеры существования прогрессий в нашей жизни.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 26.04.2019
Размер файла 913,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Арифметическая и геометрическая прогрессии в повседневной жизни

ВВЕДЕНИЕ

Актуальность

Математика давно стала частью нашей жизни. На уроках алгебры в 9 классе мы изучили арифметическую и геометрическую прогрессии: дали определение, научились находить по формулам любой член прогрессии и сумму первых членов прогрессии. Эти знания применяются людьми при выполнении различных вычислений. В средствах массовой информации мы часто слышим выражения «…увеличивается с геометрической прогрессией…», «…уменьшается по закону арифметической прогрессии…» и др.

Гипотеза:

Видимо, прогрессии имеют определенное практическое значение.

Проблема:

В каких сферах деятельности человека используются знания об арифметической и геометрической прогрессиях?

Объект исследования: арифметическая и геометрическая прогрессии.

Цель:

Выяснить, какое место в нашей жизни имеют арифметическая и геометрическая прогрессии.

Задачи исследования:

1) Выяснить, какие ученые положили начало изучению прогрессий.

2) Изучить теоретические сведения по данному вопросу.

3) Найти примеры существования и применения прогрессий в нашей жизни.

Методы исследования:

1) Анализ достоверных источников информации.

2) Сравнение различных сведений, касающихся исследования.

3) Систематизация и обобщение информации.

1. ИСТОРИЧЕСКАЯ СПРАВКА

Слово «прогрессия» (от латинского progression) означает «движение вперед» (как слово «прогресс»). Этот термин впервые был введен римским автором Боэцием, жившем в 6 веке. Первые представления об арифметической и геометрической прогрессиях были еще у древних народов. В клинописных табличках вавилонян, как и в египетских папирусах, относящихся ко II тысячелетию до н.э., встречаются примеры арифметической и геометрической прогрессий. Первые из дошедших до нас задачи на прогрессии связаны с запросами хозяйственной жизни и общественной практики, как, например, распределение продуктов, деление наследства и т.д.

С начала нашей эры известна задача-легенда: «Индийский царь Шерам позвал к себе изобретателя шахматной игры, своего подданного Сету, чтобы наградить его за остроумную выдумку. Сета, издеваясь над царем, потребовал на первую клетку шахматной доски одно пшеничное зерно, за вторую - два зерна, за третью - четыре и т. д. Оказалось, что царь не был в состоянии выполнить это «скромное» желание Сеты».

В задаче надо было найти сумму 64 членов геометрической прогрессии с первым членом единицей и знаменателем 2.

Архимед умел вычислять сумму числа членов геометрической прогрессии. Правило нахождения суммы членов арифметической прогрессии впервые встречается в «Книге абака» (1202) Леонардо Пизанского.

Известна история о немецком математике К. Гауссе (1777-1855). В детстве на уроке математике он поразил учителя тем, что быстро сложил числа от 1 до 100. Он использовал такой способ.

2.ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Арифметическая прогрессия

Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии. Каждая арифметическая прогрессия имеет вид: a, a + d, a + 2d, a + 3d, ... и обозначается знаком: ч

Свойства арифметической прогрессии:

n-ный (общий) член арифметической прогрессии:

Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому между предшествующим и последующим членом.

Если разность арифметической прогрессии d> 0, то прогрессия называется возрастающей, если d <0 - убывающей.

Число членов арифметической прогрессии может быть ограниченным, либо неограниченным.

Если арифметическая прогрессия содержит n членов, то ее сумму можно вычислить по формуле

или

Геометрическая прогрессия

Определение. Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же неравное нулю число, называется геометрической прогрессией.

Условия, при которых геометрическая прогрессия будет существовать:

1) Первый член не может быть равен нулю, т. к при умножении его на любое число мы в результате снова получим ноль, для третьего члена опять ноль, и так далее. Получается последовательность нулей, которая не попадает под данное выше определение геометрической прогрессии.

2) Число, на которое умножаются члены прогрессии не должно быть равно нулю, по вышеизложенным причинам.

Геометрическая прогрессия имеет вид:

Свойства геометрической прогрессии:

Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q.

Для того чтобы задать геометрическую прогрессию (bn), достаточно знать ее первый член и знаменатель q.

Последовательность называется возрастающей (убывающей), если каждый последующий член последовательности больше (меньше) предыдущего. Таким образом, если q > 0, то прогрессия является монотонной последовательностью.

Однако, если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.

Любая геометрическая прогрессия обладает определенным характеристическим свойством. Это свойство является следствием самого правила задания геометрической прогрессии: последовательность (bn) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов. Пользуясь этим свойством можно находить любой член геометрической прогрессии, если известны два рядом стоящие.

Для нахождения n-ого члена геометрической прогрессии есть формула:.

Для нахождения суммы числа членов геометрической прогрессии применяют следующую формулу:

У геометрической прогрессии есть еще одно свойство, а именно: из определения знаменателя геометрической прогрессии следует, что, т. е. произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.

3.ПРИМЕРЫ ЗАДАЧ, ПОКАЗЫВАЮЩИЕ НАЛИЧИЕ ПРОГРЕССИЙ В ЖИЗНИ

1. Прогрессии в природе

Самым показательным примером прогрессий может служить природа. Ученые-биологи обнаружили, что одноклеточные микроорганизмы размножаются с геометрической прогрессией. Одна бактерия делится на две; каждая из этих двух в свою очередь тоже делится на две, и получаются четыре бактерии; из этих четырех в результате деления получаются восемь бактерий и т. д.

Способность к размножению у бактерий настолько велика, что если бы они не гибли от разных причин, а беспрерывно размножались, то за трое суток общая масса потомства одной только бактерии могла бы составить 7500 тонн.

Интенсивность размножения бактерий используют в пищевой промышленности (для приготовления напитков, кисломолочных продуктов, при квашении, солении и др.), в фармацевтической промышленности (для создания лекарств, вакцин), в сельском хозяйстве (для приготовления силоса, корма для животных и др.), в коммунальном хозяйстве и природоохранных мероприятиях (для очистки сточных вод, ликвидации нефтяных пятен).

Задача 1

Каждое простейшее одноклеточное животное инфузория-туфелька размножается делением на 2 части. Сколько инфузорий было первоначально, если после шестикратного деления стало 640?

Решение:

b7=640

Пусть первоначально было b1 инфузорий. Количество инфузорий увеличивается с геометрической прогрессией. Тогда после шестого деления их стало

640=b1*26

640=b1*64

b1=640/64=10 инфузорий

Ответ: 10 инфузорий было первоначально.

Те же законы применимы и для размножения рептилий, птиц, млекопитающих. Используя общеизвестные формулы и специальные знания, ученые-естественники могут рассчитать прирост животных в заповедниках и в дикой природе.

Задача 2

Популяция кабанов в заповеднике увеличивается каждый год на 10%. По прошествии скольких лет число кабанов удвоится?

Решение:

Пусть было х кабанов. Тогда через год их стало:

2х кабанов станет по прошествии n лет.

Ответ: по прошествии 8 лет число кабанов удвоится.

Практически ничем не отличаются задачи, связанные с демографией человечества.

Задача 3

Население города составляет 60 тысяч человек. За последние годы наблюдается ежегодный прирост населения на 2%. Каким будет население города через 5 лет, если эта тенденция сохранится?

Решение:

тыс. чел.

тыс. чел.

Ответ: 66 тысяч человек.

2. Прогрессии строительстве и инженерном деле

Представьте, что вы - учетчик на стройке. Привезли большое количество бревен строевого леса. Нужно быстро определить, сколько бревен привезли. Рассмотрим такую задачу.

Задача 4

При хранении бревен строевого леса их укладывают так, как показано на рисунке. Сколько бревен находится в одной кладке, если в ее основании положено 12 бревен?

Решение:

а1= 12, аn=1, d= -1

Sn- ?

аn = a1+ d · (n - 1)

1 = 12 + (n - 1)·(-1)

1 = 12 - n +1

n= 12 + 1 - 1

n= 12

Ответ: 78 бревен.

Иногда формулами арифметической прогрессии пользуются в своих расчетах инженеры. Например, при строительстве зданий и конструкций.

Задача 5

Витя решил сделать садовую лестницу с таким расчетом, чтобы нижняя ступенька имела длину 60 см, а каждая из следующих 12 ступенек была на 2 см короче предыдущей. Какой длины должна быть верхняя ступенька лестницы?

Дано:

a1=60

Найти:

Решение:

a13=60+12*(-2)=36

Ответ:36 сантиметров.

3. Прогрессии в медицине и при планировании лечения

Задача 6

Курс воздушных ванн начинают с 15 мин. в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. Сколько дней следует принимать ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1 час45 минут?

Дано:

а1= 15 мин

d = 10

an = 1ч 45 мин = 105 мин

Найти:

n = ?

Решение:

an = a1+ d · (n - 1)

105 = 15 + (n - 1) · 10

105 = 15 +10 n - 10

-10n = 15 - 10 - 105

-10n = -100

n = 10

Ответ: 10 дней следует принимать воздушные ванны.

Задача 7

Больной принимает лекарство по следующей схеме: в первый день он принимает 5 капель, а в каждый следующий день -- на 5 капель больше, чем в предыдущий. Приняв 40 капель, он 3 дня пьет по 40 капель лекарства, а потом ежедневно уменьшает прием на 5 капель, доведя его до 5 капель. Сколько пузырьков лекарства нужно купить больному, если в каждом содержится 20 мл лекарства (что составляет 250 капель)?

Решение:

5, 10, 15,…,40, 40, 40, 35, 30,…,5 - математическая модель прогрессии

an = a1+ d · (n - 1)

40 = 5+ 5 · (n - 1), откуда n=8

180 капель больной принимал по схеме в первый период и столько же во второй период. Всего он принял 180+40+180=400, всего больной выпьет 400:250=1,6 пузырька. Значит, надо купить 2 пузырька лекарства.

Ответ: 2 пузырька.

4. Прогрессии в банковских расчетах

Денежные вклады под проценты -- это пример геометрической последовательности. Зная формулы суммы членов геометрической последовательности, можно подсчитывать сумму на вкладе. Каждому в жизни приходится решать задачи, связанные с денежными вкладами.

Задача 8

Вкладчик 1 января 2017 г внес в сберегательный банк 40 000 р. Какой была сумма его вклада на 1 января 2019 г., если сбербанк начислял ежегодно 6% от суммы вклада?

Решение:

b1=40000

b2=40000+40000*0,06=42400

q=42400/40000=1,06

b3=b1*q2=40000*1,062=44944

Ответ:44944 рублей стала сумма вклада.

5. Прогрессии в спорте

Задача 9

В соревновании по стрельбе за каждый промах в серии из 25 выстрелов стрелок получал штрафные очки: за первый промах -- одно штрафное очко, за каждый последующий -- на 0,5 очка больше, чем за предыдущий. Сколько раз попал в цель стрелок, получивший 7 штрафных очков?

Дано:

Решение:

Подсчитаем количество промахов.

- промахов

- не удовлетворяет условию задачи

- попаданий

Ответ: 21 раз попал в цель стрелок.

Задача 10

Альпинисты в первый день восхождения поднялись на высоту 1400 м, а затем каждый следующий день они проходи ли на 100 м меньше, чем в предыдущий. За сколько дней они покорили высоту в 5000 м?

Дано:

Решение:

- не удовлетворяет условию задачи

Ответ: за 4 дня альпинисты покорили высоту.

6. Прогрессии в других областях деятельности

В каких процессах ещё встречаются такие закономерности? Деление ядер урана происходит с помощью нейтронов. Нейтрон, ударяя по ядру урана раскалывает его на две части. Получается два нейтрона. Затем два нейтрона, ударяя по двум ядрам, раскалывают их еще на 4 части и т.д. -- это геометрическая прогрессия.

При повышении температуры в арифметической прогрессии скорость химической реакции вырастает в геометрической прогрессии.

Возведение многоэтажного здания -- пример арифметической прогрессии. Каждый раз высота здания увеличивается на 3 метра.

Вписанные друг в друга правильные треугольники -- это геометрическая прогрессия.

Равноускоренное движение -- арифметическая прогрессия, т.к. за каждые промежутки времени тело увеличивает скорость в одинаковое число раз.

Даже деревенские слухи можно описать с помощью геометрической прогрессии. Приведем пример.

В поселке 2 000 жителей. Приезжий рассказывает новость трем соседям; каждый из них рассказывает новость уже трем своим соседям и т. д. Новость распространяются с геометрической прогрессией.

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе работы было установлено, что сами по себе прогрессии известны так давно, что сложно говорить о том, кто их открыл. Также мы убедились в том, что задачи на прогрессии, дошедшие до нас из древности, как и многие другие знания по математике, были связаны с запросами хозяйственной жизни.

Мы выяснили, какие ученые внесли свой вклад в развитие теории прогрессий и как теоретические знания применяются на практике в современной жизни.

Проанализировав различные задачи, мы увидели, что прогрессии встречаются при решении задач в медицине, в строительстве, в банковских расчетах, в живой природе, в спортивных соревнованиях и в других жизненных ситуациях.

Получив такой результат, я решил узнать, что мои одноклассники знают о прогрессиях и использовали они или их семья эти знания в своей жизни. С этой целью я провел среди них опрос. Результаты опроса представлены на диаграммах.

СПИСОК ЛИТЕРАТУРЫ

арифметический прогрессия задача

1. Алгебра. 9 класс. В 2 ч. Ч.2. Задачник для учащихся общеобразовательных учреждений/ А.Г.Мордкович, Л.А. Александрова, Т.К. Мишустина. - Москва, Мнемозина, 2010.

2. Алгебра. 9 класс. Учебник для общеобразовательных учреждений/ Ю.Н. Макарычев и др. под ред. С.А. Теляковского. -Москва, Просвещение, 2017.

3. Пичурин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9 классов средней школы. -Москва, Просвещение, 1990.

4. Савин А. П. Энциклопедический словарь юного математика. - Рипол Классик, 1989.

ПРИЛОЖЕНИЕ

Результат анкетирования

1) Знаете ли вы, как найти любой член арифметической или геометрической прогрессии?

2) Известно ли вам что-либо из истории возникновения прогрессий?

3) Люди каких профессий чаще всего сталкиваются с прогрессиями?

4) Связана ли тема “Прогрессии” с банковским делом?

5) Ваши родители когда-нибудь брали кредит?

На основе полученных данных можно сделать вывод о том, что знания арифметической и геометрической прогрессий помогают человечеству решать многие проблемы. Арифметическая и геометрическая прогрессии не только связаны с красивыми задачами и легендами прошлого, но и с нашей повседневной жизнью, и позволяют изучать часто встречающиеся на практике процессы.

Это еще раз доказывает, что математика - не абстрактная наука, а наука, имеющая прямое отношение к нашей жизни.

Размещено на Allbest.ru


Подобные документы

  • Квадратичная функция. Графиком квадратичной функции является парабола. Логарифмическая функция. Синус, косинус, тангенс, котангенс угла. Арифметическая прогрессия. Геометрическая прогрессия. Сумма бесконечной геометрической прогрессии.

    контрольная работа [166,3 K], добавлен 19.05.2006

  • Определение номера и значения членов прогрессии для бесконечно убывающей геометрической прогрессии. Вычисление относительной погрешности величины. Определение значений машинного нуля и бесконечности. Поведение погрешностей в зависимости от аргумента.

    лабораторная работа [283,1 K], добавлен 15.11.2014

  • Натуральные, целые, иррациональные числа. Арифметическая и геометрическая прогрессии. Экономические вопросы, связанные с деньгами, прибылью, доходами. История открытий (Эвклид, Архимед, Лобачевский, Эйнштейн).

    творческая работа [50,0 K], добавлен 18.06.2007

  • Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.

    курсовая работа [214,2 K], добавлен 12.08.2009

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Достижения древнеегипетской математики. Источники, по которым можно судить об уровне знаний древних египтян. Задачи на арифметическую и геометрическую прогрессии, нахождение числа Пи, подчёркивают практический и теоретический характер древней математики.

    реферат [165,8 K], добавлен 14.12.2009

  • Прогрессии многочленов и их матриц. Описание вертикальных рядов. Построение алгебраической трапеции из ограниченного количества чисел ряда последовательности. Свободные члены выражений. Особенности разрешимости Диофантовых уравнений. Расшифровка формул.

    курсовая работа [654,7 K], добавлен 31.12.2015

  • Развитие математики как теории в школе Пифагора. Планиметрия прямолинейных фигур. Стереометрия, теория арифметической и геометрической пропорций. Открытие несоизмеримых величин. Бесконечность как математическая категория. Период академии, фаза упадка.

    реферат [24,5 K], добавлен 29.03.2010

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа [77,6 K], добавлен 20.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.