Інтегральне зображення розв'язку мішаної задачі для системи еволюційних рівнянь параболічного типу на кусково-однорідному сегменті з м'якими межами
Одержання інтегрального зображення точного аналітичного розв'язку мішаної задачі для системи рівнянь параболічного типу. Аналіз моделювання еволюційного процесу методом гібридного диференціального оператора Бесселя-Лежандра-(Конторовича-Лєбєдєва).
Рубрика | Математика |
Вид | статья |
Язык | украинский |
Дата добавления | 04.02.2017 |
Размер файла | 228,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.
контрольная работа [723,3 K], добавлен 07.01.2016Ряди Фур'є за ортогональними системами тригонометричних функцій, ознаки їх збіжності. Постановка крайових задач, вивід рівняння теплопровідності. Принцип максимуму і теорема єдиності. Розв'язування неоднорідних задач параболічного типу для прямокутника.
дипломная работа [1,1 M], добавлен 24.01.2012Розв'язання завдання графічним способом. Зображення розв'язку системи нерівностей, визначення досягнення максимуму та мінімуму функції. Розв'язання транспортної задачі методом потенціалів та симплекс-методом, формування оціночної матриці з елементів.
задача [134,9 K], добавлен 31.05.2010Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.
курсовая работа [236,5 K], добавлен 11.06.2015Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.
контрольная работа [170,2 K], добавлен 16.05.2010Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.
курсовая работа [229,8 K], добавлен 13.05.2013Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.
курсовая работа [419,2 K], добавлен 29.08.2010Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.
презентация [86,2 K], добавлен 06.02.2014Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.
практическая работа [42,3 K], добавлен 09.11.2009Визначення метричного простору. Границя функції у точці. Властивості границь дійсних функцій. Властивості компактних множин. Розв’язок системи лiнiйних рівнянь. Теорема про існування i єдність розв’язку диференціального рівняння. Нумерація формул.
методичка [461,1 K], добавлен 25.04.2014