Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.
Виды статистических показателей: абсолютные, относительные и средние величины. Условия применения средних величин в анализе, виды средних величин и способы их вычисления. Виды вариации и система показателей вариации: абсолютные и относительные.
Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.
Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.
Распространенные классы потоков. Стационарный ординарный поток без последействия. Независимые случайные величины, распределенные по показательному закону. Математическое ожидание, дисперсия промежутка времени между событиями. Типы заявок и номера каналов.
Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.
Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
Статистические таблицы как наиболее эффективная форма представления результатов сводки. Относительные величины их виды, способы расчета и область применения. Методика определения коэффициента детерминации и эмпирического корреляционного отношения.
История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.
Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.
Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.
Определение координат вектора в заданном базисе. Разработка уравнения линии, каждая точка которой отстоит от заданной точки А вдвое дальше, чем от прямой. Доказательство совместимости функции, решение тремя способами, расчет базиса и размерности решений.
- 2175. Основы высшей математики
Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.
- 2176. Основы высшей математики
Характеристика системы линейных неравенств, определяющих треугольник. Исследование функции на возрастание, убывание и экстремумы. Вычисление площадей фигуры, ограниченной графиками функций. Анализ функции на выпуклость, вогнутость, точки перегиба.
- 2177. Основы высшей математики
Периодизация этапов становления науки изучающей величины, количественные отношения и пространственные формы. История зарождения неевклидовой геометрии. Действия с комплексными числами. Фундаментальные представления об алгебре матриц и интегралов.
Сущность численных методов решения задач на ЭВМ как части вычислительной математики. Процесс классификации задач численных методов. Понятие погрешности как разницы между точным значением величины и известным значением. Метод оптимизации и равных вкладов.
- 2179. Основы геометрии
Три признака равенства треугольников. "Замечательные" линии и точки: высоты, медианы, бисектриссы треугольника, прямые Эйлера и Симсона. Практическая значимость точки Торричелли, окружности девяти точек, точки Брокара в строительстве и архитектуре.
Направления исследований в дискретной математике, направления их реализации и анализ результатов. Виды теорем и способы их доказательства: цепочка заключения, от противного, метод переборов и математической индукции, комбинированное доказательство.
- 2181. Основы дробей
Возникновение дробей, их изображение с помощью дробной черты, сравнение по величине эмпирическим методом, сравнением с единицей и путем приведения к общему знаменателю. Дроби как следствие измерения и деления. Числитель, знаменатель и смешанные числа.
- 2182. Основы комбинаторики
Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
- 2183. Основы комбинаторики
Общие правила комбинаторики, определение понятий множества и факториала. Содержание разделов комбинаторики - перечислительного, экстремального и вероятностного. Понятие о размещении, перестановке и сочетании элементов. Решение комбинаторных задач.
- 2184. Основы комбинаторики
Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
Применение статистических методов изучения живых организмов. Определение перспектив использования биометрического метода. Функциональная зависимость и корреляция в биометрических исследованиях. Рассмотрение примеров корреляционных зависимостей.
Классические шифры, маршрутная транспозиция. Диофантово управление первой степени, решение сравнения, криптосистема без передачи ключей. Криптосистема с открытым ключом, надежность системы. Криптографические алгоритмы защиты программного обеспечения.
- 2187. Основы линейной алгебры
Поиск способов, которыми можно выбрать из шести пар одну перчатку на левую руку и одну на правую так, чтобы выбранные перчатки были разных размеров. Количество способов, которыми можно купить 12 открыток из десяти видов в неограниченном количестве.
Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.
Определение логических отношений между понятиями и выражение этих отношений с помощью круговых схем. Объединенная классификация суждений, изображение отношений между терминами с помощью кругов Эйлера, установление распределенности субъекта и предиката.