- 4801. Теория погрешностей
Изучение сущности абсолютной и относительной погрешности. Характеристика понятия верной цифры. Рассмотрение последовательности значений с помощью формулы общего члена прогрессии. Расчет определителя матрицы при нескольких различных значениях аргумента.
Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.
Скалярное поле, производная по направлению, градиент функции. Оператор Гамильтона. Свойства векторного поля. Комплексные числа, формулы Эйлера. Производные и интеграл от функции комплексного переменного. Ряды Тейлора и Лорана. Вычеты и их использование.
- 4804. Теория принятия решений
Постановка задачи и построение ее математической модели. Запись переменных, целевой функции, неявного ограничения. Выбор, обоснование и описание метода решений поставленной задачи. Описание симплекс-метода. Проведение анализа модели на чувствительность.
- 4805. Теория принятия решений
Определение понятий "планирование", "прогнозирование". Виды неопределенностей, этапы в процессе планирования. Основные методы принятия решений. Задачи оптимизации при принятии решений. Этапы и цель разработки моделей линейного программирования.
Изучение основ теории решения изобретательских алгебраических задач, выявление их функций и областей применения. Рассмотрение примеров решения параметрических уравнений и неравенств алгебраическим, аналитическим и функционально-графическим способами.
Описание вопроса, откуда берут своё начало технические системы и методы решения изобретательских задач, анализ дальнейшего их развития и применения в различных сферах. Описание нескольких примеров с задачами данного типа и вариантами их решения.
Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.
Характеристика теории случайных процессов как науки, изучающей закономерности случайных явлений и динамики их развития. Особенности случайных функций, сечения, математического ожидания и реализации случайного процесса, его классификация и формулы.
Описание математической модели объекта управления, с заданной структурной схемой, в векторно-матричной форме. Определение установившегося значения координат состояния объекта и подача управляющего и возмущающего воздействий в виде операторных уравнений.
- 4811. Теория статистики
Ряды динамики и их виды. Показатели изменений уровней динамических рядов. Текущая демографическая ситуация в России, возрастная структура населения. Корреляционный анализ, его цели и задачи. Изучение вариации в статистической практике (мода и медиана).
- 4812. Теория статистики
Рассмотрение агрегатной формы общего индекса, показателей вариации. Изменение динамики среднего значения изучаемого статистического процесса. Расчет структурных величин: моды и медианы. Определение индекса товарооборота, с помощью взаимосвязи индексов.
- 4813. Теория Фредгольма
Рассмотрение интегральных уравнений в математике. Совокупность методов и результатов в спектральной теории операторов Фредгольма. Особенности решения однородных и неоднородных интегральных уравнений. Понятие ядер Фредгольма в гильбертовом пространстве.
- 4814. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
Поиск циклического изоморфизма среди групп 2-го и 3-го порядка. Построение таблицы Келли для групп различного порядка. Доказательство теоремы о циклическом изоморфизме. Элементы симметрической группы. Система матричных уравнений. Группы матриц Паули.
Основные свойства изоморфных подгрупп некоторой абстрактной группы G – циклического изоморфизма. Рассмотрение примера матричного представления циклического изоморфизма четвертого уровня. Простейшие решения системы уравнений циклического изоморфизма.
Умови, що забезпечують нормальність та замкненість сімей відображень скінченного скривлення довжини, поведінка дилатацій цих відображень при локально рівномірній збіжності. Узагальнені та посилені варіанти теорем збіжності для квазіконформних відображень.
- 4819. Теорія груп
Основні поняття теорії груп. Асоціативний закон. Самоспівпадання тіла. Циклічні групи та підгрупи. Спряжені елементи та класи. Прямий добуток груп. Геометричні властивості, властиві поворотам навколо осі. Сингонії (кристалічні системи) і гратки Браве.
- 4820. Теорія ігор
Формальні методи моделювання та теорія ігор. Гра та сукупність правил, що описують формальну структуру ситуації змагання. Види теорії ігор за властивостями функцій виграшу (платіжних функцій). Основні завдання застосування ігор у людській діяльності.
Розв'язання актуальної математичної проблеми побудови теорії інтерполяційних задач у класі Стільтьєса та вирішення на цій основі конкретних інтерполяційних задач. Опис значень дефектних чисел симетричних операторів, породжених блочними матрицями Якобі.
Вирішення узагальненої інтерполяційної задачі для стільтьєсівських матриць-функцій. Доведення збігу множини канонічних і множини N-екстремальних рішень 1 та 2-го роду. Узагальнення класичного критерію Стільтьєса невизначеності проблеми моментів.
- 4823. Теорія ймовірностей
Формули множення ймовірностей для залежних та незалежних випадкових подій. Локальна та інтегральна теореми Мавра-Лапласа. Формула Пуассона малоймовірних випадкових подій. Нерівності Чебишова та її значення. Теорема Бернулі. Біноміальний закон розподілу.
- 4824. Теорія ймовірностей
Класичне визначення ймовірності, умовна ймовірність. Зв'язок теорії ймовірностей з теорією множин. Теореми про додавання та множення ймовірностей довільних, несумісних та незалежних подій. Сутність теорем та формул Лапласа, Байєса, Бернуллі, Пуассона.
Випадкові події та означення ймовірності. Основні формули додавання і множення ймовірностей. Незалежні повторні випробування, формула Бернуллі. Дискретні випадкові величини та їх числові характеристики. Статистична перевірка статистичних гіпотез.
Функції від одного випадкового аргументу. Композиція законів розподілу. Математичні моделі в теорії ймовірності. Ступінь точності випробування. Розрахунок ймовірності складніших подій. Виникнення теорії ймовірностей як науки, встановлення аксіоматики.
- 4827. Теорія ймовірності
Історія виникнення теорії ймовірностей у середині XVII ст. у зв'язку з завданнями розрахунку шансів виграшу гравців в азартних іграх. Міркування французького математика Паскаля. Розрахунок рівноможливих випадків. Теорія ймовірностей - розділ математики.
Розгляд особливостей теорії матриць. Характеристика класів незміщених квадратичних та білінійних оцінок моментів другого порядку, дисперсії та коефіцієнта коваріації. Особливості методів теорії оцінок параметрів випадкових процесів та послідовностей.
Основні поняття теорії ігор, їх класифікація. Матричні ігри для двох осіб та геометрична інтерпретація гри 2х2. Вимірювання економічного ризику за допомогою теорії ігор. Приклади розв’язання задач на вибір оптимальної стратегії в іграх з природою.
Побудова та дослідження алгебраїчної системи мультимножин. Структура сім’ї мультимножин, впорядкованої за природним відношення включення. Застосування отриманих результатів в інформатиці та репрезентативних предметних областях в табличних базах даних.