Понятие эвристики как метода научного познания, особенности ее применения в математике. Понятие доказательства в математике и его особенности, применение для его построения эвристических логических подходов. Эвристический подход при доказательстве теорем.
Рассмотрение элементов теории вероятностей. Испытание как осуществление комплекса условий. Элементарное событие – результат который может произойти при проведении испытания. Пространство совокупности элементарных событий – множество всех исходов испытания
Обзор идей философии математики К. Райта и Б. Хейла. Описание одной из проблем этого направления - связи понятий первого и второго уровня в программе основания математики. Основная идея Райта и Хейла, особенности и условия применения принципа Юма.
Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.
Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
Основні поняття теорії випадкових процесів, його реалізація. Ймовірність випадкового процесу: дискретного, неперервного часу або стану, математичного сподівання та дисперсії, квадратичного відхилення. Властивості кореляційних функцій випадкового процесу.
Сутність екстремуму функціоналу: максимуму та мінімуму, його розрахунок для різних типів функціоналів. Визначення оптимального закону керування об’єктом методом варіаційного числення. Характеристика рівняння Ейлера. Екстремальні криві функціонала.
Методика вивчення на уроках математики поняття коефіцієнта буквеного виразу. Застосування сполучної та переставної властивості множення для спрощення буквених виразів. Декілька типових прикладів. Особливі випадки (коли коефіцієнт дорівнює 1 або -1).
Сутність випадкових процесів як процесів з дискретними станами. Дослідження поняття марківського випадкового процесу та його використання у біології, фізиці, теорії обслуговування. Ілюстрація марківських випадкових процесів за допомогою графу станів.
Векторний простір (лінійний простір) як безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Абстрактний векторний простір та властивості лінійного простору. Конкретні приклади векторного простору.
Дослідження сутності понять "прогноз", "прогнозування" та "прогнозна модель", загальний аналіз методів прогнозування. Обґрунтування вибору конкретного методу прогнозування. Характеристика кількісних та якісних методів прогнозування розвитку підприємства.
Розкриття питань застосування похідної для дослідження функцій на монотонність та екстремум, знаходження найбільшого та найменшого значення функцій. Розгляд прикладних задач на дослідження функцій, на складання рівнянь дотичної, нормалі та деяких інших.
Способи, за якими може бути задана функція: аналітичний, графічний, табличний, описовий та алгоритмічний. Визначення монотонних та строгомонотонних функцій. Ознаки функції від функції, або складної функції, або суперпозиції функцій та оберненої функції.
Розгляд типових помилок учнів під час вивчення змістової лінії виразів і перетворення виразів курсу алгебри, причини їх виникнення. Розробка методики організації превентивної діяльності вчителя математики під час вивчення цілих виразів та їх перетворень.
Статические моменты сечения. Методы определения центробежного момента инерции части сечения, расположенной по одну сторону от оси, который будет равен моменту части, расположенной по другую сторону, но противоположен ему по знаку. Моменты инерции сечения.
Вивчення різних алгоритмів оклюзивного виключення, проведення розбору кожного з них, його історію, оцінка необхідності у ньому, математичних і логічних основ алгоритму. Розробка власного рендер двигуна. Опис математичної і логічної основ алгоритму.
Порівняння методів розпізнавання рослинних об'єктів за результатами дистанційного зондування. Застосування аналізу Фішера і нейромережних методів для побудови розпізнавальної моделі. Використання для моделювання даних, отриманих з допомогою спектрометра.
- 4789. Порівняння чисел
Правила використання властивостей множення і додавання для спрощення обчислень. Принципи порівняння чисел за допомогою координатної прямої. Основи порівняння раціональних чисел як за допомогою координатної прямої, так і за допомогою правил порівняння.
- 4790. Последовательность чисел
Обзор видов множества. Характеристика геометрического содержания предела числовой последовательности. Арифметические действия над основными свойствами сходящихся математических постоянств имеющих предел. Обоснование условий сходимости числового ряда.
Поняття послідовних незалежних експериментів та схеми Бернуллі. Приклади застосування локальної та інтегральної теорем Лапласа. Відхилення відносної частоти від постійної ймовірності в незалежних експериментах. Скінченний однорідний ланцюг Маркова.
Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.
Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.
Анализ двухступенчатой процедуры выполнения наблюдений при неизвестном значении параметра, определяющего закон распределения результатов наблюдений, и принятия решений на их основе. Доказательство теоремы о асимптотической оптимальности процедуры.
Наведення постановки задачі оптимального розміщення неорієнтованих плоских геометричних об’єктів з кусочно-нелінійними границями. Розгляд випадку, коли об’єкти розміщення можуть бути як орієнтованими, так і неорієнтованими. Геометричне проектування карт.
Математичне формулювання задачі про обсяги поставок споживачу від постачальника; знаходження мінімуму функції. Використання алгоритму транспортної задачі лінійного програмування. Розподіл ресурсів постачальника. Метод мінімального елементу в матриці.
Наукова діяльність великого математика О.М. Ляпунова. Харківський період наукової діяльності 1885–1902 років та період у Петербурзі 1902–1918 років. Перші кроки викладацької діяльності та наукові відкриття. Теорії стійкості, фігур і рівноваги рідких мас.
Исследование алгоритмов решения нестационарных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах различной размерности. Изучение дифференцирования экспонентов от гиперкомплексного переменного по скалярному аргументу.
Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.
Моделирование выборки из равномерного закона распределения. Построение вариационного ряда выборки, гистограммы и полигона частот, эмпирической функции распределения. Расчет выборочного среднего и выборочной дисперсии. Нахождение выборочной моды и медианы.
