Анализ составления матрицы В, состоящей из свободных членов. Приведение к алгебраическому преобразованию, чтобы главная диагональ была равна единице с помощью метода Гаусса. Особенность создания матрицы M, состоящей из коэффициентов при неизвестных.
Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.
Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
Математика как наука о пространственных формах действительного мира. Анализ особенностей получение прочных навыков решения текстовых задач, изучаемых в рамках школьного курса математики, представленных в материалах Единого Государственного экзамена.
Развитие творческого потенциала ученика при изучении математики методом практической работы по системе Л.В. Занкова (работа с текстовыми задачами). Составление обратных задач, сравнение задач с одинаковой фабулой, но различным математическим содержанием.
Необходимое и достаточное условия разрешимости транспортной задачи. Рассмотрение методов построения начального опорного решения. Особенности решения транспортных задач с неправильным балансом. Алгоритм решения транспортной задачи методом потенциалов.
Рассмотрение экономико-математической модели транспортной задачи. Алгоритм решения транспортной задачи методом потенциалов. Проверка плана на оптимальность и расчет потенциалов. Проверка небазисных клеток на соответствие их условию оптимальности.
Назначение и функции программы для решения транспортной задачи. Решение и процедура построения потенциального (оптимального) плана. Математическая модель, информационная база задачи. Входная и выходная информация. Описание программы, ее применения.
Построение приближенного решения трехмерной обратной задачи потенциала Вебера. Применение метода регуляризации А.Н. Тихонова, получение оценки между регуляризованным и точным решениям. Определение параметра регуляризации трехмерного потенциала Вебера.
Введение дополнительных переменных. Разделение области возможных значений переменных и параметров. Вспомогательные преобразования, приводящие к упрощению выражений. Применение классических формул. Несколько примеров решения задач описанными методами.
Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.
Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.
Решение дифференциальных уравнений и линейных Бернулли. Исследование на сходимость знакоположительных рядов и рядов с положительными членами при помощи интегрального признака Коши. Вычисление признака Даламбера. Сравнение эталонных гармонических рядов.
Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.
Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.
Решение линейного уравнения вида АХ=В. Схема поиска линейных неравенств Ах>B, Ax(=)B. Аналитический и графический способ решения задач с параметрами. Поиск количества корней данного уравнения х^2-2х-8-а=0 в зависимости от значений параметра а.
Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.
Рассмотрение различных способов решения тригонометрических уравнений. Ознакомление с понятием и историей возниконовения тригонометрии. Составление алгоритма решения задания. Описание воспитания самостоятельности и творческого отношения к деятельности.
Особенности определения технических показателей работоспособности проектируемой системы массового обслуживания. Характеристика аспектов решения уравнения Колмогорова. Определение требуемого количества операторов для безотказного функционирования.
Ангармонический осциллятор с различной степенью нелинейности: приближенные методы и прямые численные расчеты потенциалов при решении случае уравнения Шредингера с потенциалом четвертой, шестой и восьмой степенями нелинейности программой в среде Maple.
Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
- 4854. Решетка мультимножеств
Построение решетки мультимножеств и соответствующей абстрактной решетки, сигнатура которой состоит из операций объединения и пересечения мультимножеств. Характеристические функции мультимножества. Введение бинарного отношения включения в мультимножествах.
Изучение особенностей применения основной теоремы теории делимости к циклическим подгруппам. Исследование аддитивной группы целых чисел. Определение сущности изоморфизма. Ознакомление с теоремой теории делимости. Анализ примеров циклических групп.
- 4856. Риманова геометрия
Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
- 4857. Римские цифры
Ознакомление с историей развития римской (буквенной) системы нумерации. Рассмотрение правил записи чисел римскими цифрами. Исследование и характеристика особенностей применения римских цифр. Изучение процесса записи арабских чисел с помощью римских.
- 4858. Рисунок и перспектива
Изучение математического изобразительного искусства, его использования в рисовании, литографии, графике. Характеристика техники выполнения рисунка, фрактала, ленты Мебиуса. Описания перспективы, науки об изображении предметов в пространстве на плоскости.
Означення ермітових сплайнів з нелінійними за параметрами виразами в ланках. Виведення формул для параметрів ермітових сплайнів з експоненціальними та кубічними ланками. Алгоритм рівномірного наближення функцій з заданою похибкою, методи її розрахунку.
- 4860. Рівномірний розподіл
Параметри рівномірного розподілу. Стаціонарні та ергодичні випадкові процеси. Значення щільності в граничних точках. Моменти неперервного рівномірного розподілу. Генератор випадкового вибору. Графік щільності ймовірностей. Приклади випадкових процесів.