Построение математической модели эмоций
Модальность как одна из качественных специфических особенностей эмоционального реагирования. Методика построения системы дифференциальных уравнений, описывающих протекание эмоции. Аппарат иммунных систем - способ реализации математической модели.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 19.01.2018 |
Размер файла | 18,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.
контрольная работа [1,6 M], добавлен 22.12.2014Создание математической модели движения шарика, подброшенного вертикально вверх, от начала падения до удара о землю. Компьютерная реализация математической модели в среде электронных таблиц. Определение влияния изменения скорости на дальность падения.
контрольная работа [1,7 M], добавлен 09.03.2016Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа [489,1 K], добавлен 17.11.2016Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.
контрольная работа [239,6 K], добавлен 20.04.2016Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.
курсовая работа [863,4 K], добавлен 21.06.2015Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.
курсовая работа [997,2 K], добавлен 21.01.2014Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.
дипломная работа [4,1 M], добавлен 24.09.2012Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.
контрольная работа [249,3 K], добавлен 19.01.2009Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.
реферат [129,3 K], добавлен 15.08.2009Вычисление определителя, алгебраических дополнений. Выполнение действий над матрицами. Решение систем линейных уравнений по формулам Крамера, методом Гауса. Определение плана выпуска химикатов на заводе. Составление экономико-математической модели задачи.
контрольная работа [184,8 K], добавлен 25.03.2014Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.
курсовая работа [113,1 K], добавлен 13.09.2010История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.
контрольная работа [50,4 K], добавлен 10.10.2014Проектирование математической модели. Описание игры в крестики-нолики. Модель логической игры на основе булевой алгебры. Цифровые электронные устройства и разработка их математической модели. Игровой пульт, игровой контроллер, строка игрового поля.
курсовая работа [128,6 K], добавлен 28.06.2011Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа [477,4 K], добавлен 17.06.2015Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.
курсовая работа [462,5 K], добавлен 20.10.2013Геометрический, кинематический и силовой анализ механизма навески трактора Т150К. Использование плоской математической модели механизма. Расчет на устойчивость мобильного сельскохозяйственного агрегата. Определение координат характерных точек механизма.
курсовая работа [547,1 K], добавлен 22.12.2015Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.
курсовая работа [1,5 M], добавлен 15.06.2009