Рассмотрение особенностей исследования остаточных величин. Характеристика основных случаев применения метода Гольдфельда-Квандта. Определение значения отсутствия автокорреляции остатков. Выявление алгоритма проверки регрессии на гетероскедастичность.
Реализация устройств с каскадным счетом. Отказ от принципа использования двоичной системы счисления. Использование биноминальных матриц в области цифрового электронного счета и надежного кодирования информации. Специфика перехода из разряда в разряд.
Описание новых классов фреймов Парсеваля (простых и составных) в произвольных гильбертовых пространствах конечной или бесконечной размерности. Доказательство теорем о представлении составных фреймов Парсеваля через суммирование разных классов простых.
Адитивні проблеми теорії чисел й дільників. Метод оцінок тригонометричних сум. Проблема дільників Титчмарша. Подання натуральних чисел у вигляді суми двох квадратів та єдиність такого подання. Подання натурального числа у вигляді суми чотирьох квадратів.
Проблемы метода дискретных вихрей. Проведение методических исследований и численных сравнительных экспериментов на основе усовершенствованного метода дискретных вихрей. Сравнение с экспериментом Дикинсона и Готца и результатами моделирования Элдриджа.
Роль Софуса Ли в создании фонда по присуждению премий математикам. Исторический анализ процесса становления Премии Абеля, лауреаты главной математической премии и их главные достижения. Использование Фюрстенбергом и Маргулисом вероятностных методов.
Теоретические основы преобразование выражений с помощью дифференциалов. Понятие производной, понятие частной производной. Связь между производной и дифференциалом. Таблица производных основных элементарных функций. Правила дифференцирования функций.
Понятие частной производной. Вид полного дифференциала. Теоретические основы преобразования выражений с помощью дифференциалов. Таблица производных основных элементарных функций. Значение аргумента, правила дифференцирования функций, решение задач.
Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.
Методика определения напряженности осевого импульсного магнитного поля, проникшего в движущуюся проводящую оболочку, при помощи дифференциального уравнения первого порядка. Решение краевой задачи для уравнения проникновения поля в частных производных.
- 4931. Преобразование Лапласа
Функция-оригинал, свойство линейности. Дифференцирование и интегрирование оригинала. Смещение в аргументе изображения и в аргументе оригинала (запаздывание). Изображение периодического оригинала. Свёртка функций, теорема умножения, интеграл Дюамеля.
- 4932. Преобразование Лапласа
Переменная преобразования Лапласа. Оригиналы и изображения непрерывных сигналов по Лапласу. Реакция системы после почленного перехода от оригиналов к изображениям при нулевых начальных условиях. Определение передаточной функции инерционного звена.
- 4933. Преобразование плоскости
Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.
Построение проекций некоторой точки А, расположенной в I октанте, на три взаимно перпендикулярные плоскости. Получение комплексного чертежа и алгоритм его построения. Наглядное изображение точки в I-IV октантах. Решение определенных позиционных задач.
Определение координат точки при переходе от одной системы координат к другой. Связь между старыми и новыми координатами при повороте координатных осей на некоторый угол. Кривые второго порядка. Уравнения окружности, эллипса, гиперболы и прямой общих точек
Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.
- 4937. Преобразование функций
Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.
- 4938. Преобразование функций
Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
- 4939. Преобразования Лапласа
Прямое и обратное преобразование Лапласа. Теорема об изображении периодических оригиналов и о дифференцировании оригиналов. Поиск изображения функции, заданной формулой и графически. Примеры решения дифференциальных уравнений операционным методом.
Единичная функция Хевисайда и импульсная функция Дирака. Характеристика свойств аналитичности преобразования Лапласа. Первая и вторая теоремы разложения. Обратное преобразование Лапласа. Примеры восстановления непрерывной функции-оригинала по изображению.
Анализ элементарной теории опыта М. Морли и выявление ошибок в этой теории. Корректный расчет разности хода лучей света в интерферометре. Разработка методики, которая может позволить обнаружить орбитальное движение Земли с помощью интерферометра.
- 4942. Преобразования плоскости
Исследование классификационных методов отображения плоскости на себя. Определение равенства геометрических фигур. Свойства параллельного переноса точки в плоскости. Принципы осевой и центральной симметрий в отношении прямой. Коэффициенты гомотетии.
- 4943. Преобразования плоскости
Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.
Рассмотрение компьютерной революции как характерного примера глобальной инструментальной научной революции. Условия дл распознавание материально-технических революций в истории математики. Характеристика и специфика революции в математике par excellence.
- 4945. Приближение переменных динамических объектов управления на основе полиномиальных сплайн-функций
Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.
Нахождение точного решения задачи о минимуме заданного функционала. Решение уравнения Эйлера. Нахождение приближенных решений (итераций) задачи о минимуме по методу Ритца при определенном выборе системы координатных функций. Построение графиков функций.
Трудности решения задачи проникания недеформируемого тела при ударе по нормали в грунт. Сравнение расчетных данных, полученных по приближенной методике, с результатами численного моделирования на основе явной лагранжевой конечно-разностной схемы.
Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.
