- 3571. Эйлеровы интегралы
Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.
Доказательство теоремы по эквивалентности понятий "обобщение производной Шварца и исправленной производной по С. Шарипову". Особенности определения точки излома графика функции. Сущность теории классического анализа. Общее понятие об урчуктной функции.
- 3573. Эклектические экскурсы
Локальный релятивистский инвертор времени, расчет и обоснование его технологических показателей. Семантические основания гипердействительного, инфинитезимального анализа. Сечения числовых множеств и конденсация чисел. Множества отрицательной мощности.
Математико-статистические методы в логистике, основные понятия. Модель принятия решения в задачах выбора. Моделирование перемещения транспортных средств. Сетевое планирование в логистике. Рейтинг конкурентоспособности логистического предприятия.
Общее понятие случайной величины. Гистограмма как графическое изображение зависимости частоты попадания элементов выборки от соответствующего интервала группировки. Характеристика и особенности закона распределения дискретной случайной величины.
Эксперимент как важнейшая составная часть научных исследований, классификация, типы и задачи. Элементы теории планирования эксперимента в математической теории, методологическое обеспечение данного процесса, абсолютные и относительные измерения.
- 3577. Экстремум функции
Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
- 3578. Экстремумы
Классические методы поиска экстремума функции одной переменной. Определение глобального максимума или минимума функции одной переменной. Выпуклые и вогнутые функции. Методы исключения интервалов. Поиск экстремумов функции нескольких переменных.
Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
Свойства производственных функций и функций затрат. Эластичность как локальная характеристика, изменение ее значений. Обсуждение затрат длительного периода, использование функции Лагранжа. Полная эластичность линейно-однородной производственной функции.
- 3582. Элементарная математика
Определение основных понятий элементарной математики. Операции над множествами и законы для подмножеств: коммутативности (переместительный закон) и ассоциативности (сочетательный закон). Отображения, а также отношения эквивалентности и упорядоченности.
Исследование конечных, непрерывных и дискретных вероятностных пространств. Корреляционная теория. Закон больших чисел. Экспоненциальные полиномы и неравенства. Формулы полной вероятности и Байеса. Классические предельные теоремы. Дисперсия и энтропия.
Изучение свойств элементарных функций. Ознакомление с основными правилами построения графиков линейных, квадратичных и логарифмических функций. Рассмотрение деформации и преобразования графиков с параллельным переносом. Описание математических примеров.
Анализ использования результатов теоретического математического исследования. Рассмотрение процесса математизации технических наук как феномена при истории технических знаний в той или иной области. Главная особенность изучения математики инженером.
Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.
Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.
- 3588. Элементы комбинаторики
Изучение принципов и методов решения комбинаторных задач. Операции с конечными множествами, состоящими из элементов любой природы и их подмножества. Соединения перестановки, замещения, сочетания. Факториал и его свойства. Комбинаторный закон умножения.
- 3589. Элементы комбинаторики
Основные комбинаторные формулы. Решение задач комбинаторики средствами MS Excel. Использование встроенных функций MS Excel для вычисления перестановок, сочетаний, размещений. Основные понятия и правила комбинаторики. Свойства биномиальных коэффициентов.
Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.
Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.
Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.
Рассчет по правилу умножения матриц коэффициентов новой матрицы. Решение системы линейных алгебраических уравнений тремя методами. Дифференциальное и интегральное исчисление функции одной переменной. Нахождение площади фигуры, ограниченной линиями.
Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.
Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.
Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
История возникновения математической логики. Основное содержание, формулы, элементы, символы. Таблицы истинности, логические функции, основные логические операции. Законы логики и упрощение логических выражений. Решения задач по математической логике.
Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.
Предмет и основные методы математической статистики. Ее основные понятия. Эмпирическая функция распределения и гистограмма. Основные понятия выборочного метода. Закон распределения дискретной случайной величины. Понятие выборочного распределения.