Послідовність експериментів
Поняття послідовних незалежних експериментів та схеми Бернуллі. Приклади застосування локальної та інтегральної теорем Лапласа. Відхилення відносної частоти від постійної ймовірності в незалежних експериментах. Скінченний однорідний ланцюг Маркова.
Рубрика | Математика |
Предмет | Теорія ймовірності |
Вид | реферат |
Язык | украинский |
Прислал(а) | Головайко А.А. |
Дата добавления | 13.06.2010 |
Размер файла | 132,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеристика послідовності незалежних випробувань, застосування формул Бернуллі, Пусона, локальної та інтегральної теореми Лапласа. Аналіз моментів біноміального розподілу. Оцінка дисперсії. Математична теорія експерименту у техніко-економічних задачах.
контрольная работа [94,5 K], добавлен 19.02.2010Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.
дипломная работа [466,6 K], добавлен 11.02.2011Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.
контрольная работа [84,2 K], добавлен 23.09.2014Формула Бернуллі та її використання при невеликому числі випробувань. Застосування локальної формули Муавра-Лапласа при необмеженому зростанні числа випробувань, коли ймовірність настання події не занадто близька до нуля або одиниці. Формула Пуассона.
курсовая работа [256,9 K], добавлен 21.03.2011Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.
реферат [88,5 K], добавлен 02.02.2010Предмет теорії ймовірностей. Означення та властивості імовірності та частості. Поняття та принципи комбінаторики. Формули повної імовірності та Байєса. Схема та формула Бернуллі. Проста течія подій. Послідовність випробувань з різними ймовірностями.
курс лекций [328,9 K], добавлен 18.02.2012Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.
контрольная работа [47,2 K], добавлен 20.11.2009Вивчення теорем Чеви та Менелая на площині та в просторі, доведення нетривіальних наслідків цих теорем та розв’язання задач за їх допомогою. Застосування Теореми Менелая при доведенні теорем (наприклад, теорем Дезарга, Паппа, Паскаля, Гаусса та інших).
дипломная работа [4,0 M], добавлен 12.08.2010Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.
реферат [217,2 K], добавлен 20.12.2010Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа [126,8 K], добавлен 20.04.2011