Знакомство с основными особенностями непрерывного оптимального управления в динамических системах. Общая характеристика прикладной теории оптимального управления. Анализ задачи регулирования линейной динамической системы с квадратичным функционалом.
Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.
- 3693. Непрерывность функции
Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
Арифметические операции над функциями, имеющими предел. Доказательство непрерывности функции в точке. Переход к пределу в неравенствах. Свойства непрерывной математической функции. Изучение классификации точек разрыва в арифметических неравенствах.
Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.
Свойства непрерывных функций на языке приращений. Классификация точек разрыва. Экономический смысл непрерывности. Геометрический смысл теорем Вейерштрасса, Коши, Вейерштрасса. Применение в математике метода половинного деления. Вычисление корня уравнения.
- 3698. Непрерывность функций
Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.
Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.
- 3700. Непрерывные дроби
Современное обозначение непрерывных дробей. Работы Эйлера по теории цепных дробей. Метод нахождения наибольшего общего делителя. Корень квадратного уравнения с целочисленными коэффициентами. Метод приближенного решения дифференциальных уравнений.
- 3701. Непрерывные дроби
История и сущность цепных дробей как математического выражения. Принципы разложения в непрерывную дробь. Приближение вещественных чисел к рациональным, особенности разработки солнечного календаря. Доказательство иррациональности чисел с помощью уравнений.
Свойства плотности распределения вероятностей непрерывной случайной величины. Характеристика особенностей математического ожидания. Основы расчета плотности распределения. Рассмотрение аспектов определения дисперсии и среднего квадратического отклонения.
Рассмотрение функции распределения (интегральной). Характеристика функции плотности вероятности. Определение особенностей функции распределения для дискретных случайных величин. Исследование моментов случайных величин. Обзор характеристических функций.
- 3704. Неравенства и их системы
Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.
Систематизация теоретического материала по теме "Неравенства и оценка в текстовых задачах" и его применение к решению. Разработка типологии задач, в решении которых используется неравенства и оценка текстовых задач. Задачи, решаемые системой неравенств.
- 3706. Неравенства Коши
Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.
- 3707. Неравенство Коши
Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.
Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.
- 3709. Нерівності
Основні поняття показових логарифмічних рівнянь. Нерівності першої степені з одним невідомим. Квадратні нерівності та метод інтервалів. Ірраціональні та показові, логарифмічні, тригонометричні та алгебраїчні нерівності. Сутність системи нерівностей.
Знаходження непокращуваних нерівностей для похідних функцій зі спеціальних функціональних класів, розв'язок задачі про наближення необмежених операторів лінійними операторами. Узагальнена задача Колмогорова про існування елемента нормованого простору.
Отримання точних нерівностей для норм проміжних похідних функцій та розв'язання на цій основі важливих екстремальних задач аналізу. Вивчення тригонометричних поліномів і поліноміальних сплайнів. Взаємозв'язки точних нерівностей типу Колмогорова.
Встановлення структури замкнених підгруп афінної групи Кремони над алгебраїчно замкненим полем (в Ind-топології Зариського) характеристики 0, що містять спеціальну лінійну підгрупу для групи оборотних поліноміальних перетворень симплектичного простору.
Особливість побудови поглинаючих просторів для борелівських класів зліченновимірних розлогів. Характеристика класу монад, функторіальні частини яких можна представити у вигляді територій функціоналів. Аналіз розряду барицентрично м'яких компактів.
- 3714. Несколько подходов к определению границ изменения возмущения в задаче глобального робастного синтеза
Анализ задачи глобального робастного позиционного синтеза ограниченного управления системой с неизвестными ограниченными возмущениями. Различные подходы к нахождению границ изменения возмущения на основе метода функции управляемости В.И. Коробова.
Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.
- 3716. Несобственные интегралы
Определенные и несобственные интегралы. Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Признаки сходимости и расходимости. Эталонные интегралы.
- 3717. Несобственные интегралы
Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.
- 3718. Несобственные интегралы
Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.
Вивчення геометричного змісту похідної. Розгляд застосування похідної для розв’язання рівнянь і нерівностей. Описання методу наближеного знаходження кореня рівняння, методів хорд і дотичних. Розв’язування економічних задач за допомогою диференціювання.
Нестандартні форми навчання - як один з видів навчання учнів. Урок як основна форма організації навчання. Розробка методики нестандартних форм навчання учнів основної школи на уроках математики. Розробка та проведення уроку математики: уроку-казки.
