Теорема о проецировании прямого угла. Поверхность - множество последовательных положений некоторой линии (образующей), перемещающейся в пространстве по определенному закону. Придание чертежу поверхности наглядности. Линейчатые поверхности вращения.
- 3422. Петербург математический
Работы Эйлера по математике, механике, физике, астрономии и прикладным наукам. Решение Эйлером задачи о семи мостах Кенигсберга. Проектирование Базеном ансамбля мостов у Инженерного замка и других мостов. Вклад Софьи Ковалевской в развитие математики.
Определение понятия пирамиды - тела, образованного плоским многоугольником, точкой, не лежащей в плоскости этого многоугольника, и всех отрезков, соединяющих точки основания с вершиной. Площадь боковой и полной поверхности пирамиды. Расчет ее объема.
- 3424. Пирамиды в математике
Феномен пирамидальных усыпальниц фараонов Древнего Египта. Различные трактовки математического определения пирамиды, ее виды, симметрия, методы вычисления объема и площади. Основные теоремы, связывающие пирамиду с другими геометрическими телами.
Аналіз підпросторів єдиності елемента найкращого наближення та несиметричного наближення для неперервних функцій у метриці L1. Єдиність елемента найкращого наближення дійснозначних неперервних функцій лінійними комбінаціями фіксованих базисних функцій.
Двостороння оцінка максимуму розв’язку задачі Неймана у необмежених областях, що "звужуються на нескінченності" для параболічного рівняння, що вироджується з абсорбцією. Поведінка розв’язку мішаної задачі для рівняння в залежності від геометрії області.
Деятельность философа, математика, музыканта и астронома Пифагора. Символические афоризмы и теория о переселении душ. История теоремы Пифагора, ее доказательства методом достроения, с использованием понятия равновеликости фигур и алгебраическим методом.
Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.
- 3429. Пифагор и пифагорейцы
Жизнь и научные труды Пифагора, школа пифагорейцев, наследовавших учение философа. Физическое применение и подтверждение пифагорейцами теоретических выкладок ученого, позволивших получить необходимые в современной жизни знания в области математики.
- 3430. Пифагор Самосский
Изучение биографии древнегреческого философа, религиозного и политического деятеля, основателя пифагореизма, математика Пифагора Самосского. Основные открытия ученого и его учеников-пифагорейцев в области геометрии и геометрической интерпретации чисел.
Визначення алгоритмів побудови дискретних макромоделей об’єктів електроенергетичних систем на підставі реальних часових характеристик. Концепція "чорної скриньки" у формі дискретних рівнянь стану з використанням експертного аналізу та розділення змінних.
Описання структури максимальних нільпотентних піднапівгруп ступеня нільпотентності для напівгрупи стискуючих перетворень довільної частково впорядкованої множини з найменшим елементом. Отримання критеріїв ізоморфності двох нільпотентних піднапівгруп.
Поняття збіжного та розбіжного числового ряду, їх підсумовуючі функції. Лінійність та регулярність підсумовування розбіжних рядів за Пуассоном-Абелем, особливості їх абсолютної збіжності. Співвідношення між підсумовуванням за Чезаро і за Пуассоном-Абелем.
Розробка та реалізація математичної моделі пошуку можливого діапазону кількості циклів генерування випадкової величини для подальшого отримання адекватних значень показників надійності імітаційним методом. Оцінка надійності системи електропостачання.
Составление плана перевозок продукции со склада фирмы в четыре торговые точки области, обеспечивающего минимальные издержки на перевозки. Анализ математической модели. Использование метода Дейкстры. Построение графа, соответствующего матрице смежности.
Пути совершенствования технологии проведения математических экспериментов. Проведение однофакторного дисперсионного анализа по всем параметрам для каждого критерия. Расчет значения параметра оптимизации при различных уровнях фиксированных параметров.
Свойства рабочего пространства и манипуляционного робота. Математическая модель двухзвенного манипуляционного робота. Проблемы прямого планирования, обзор алгоритма и выборка движения. Предположения для упрощения, обозначения для объектов в пространстве.
Рассмотрение основных критериев планирования эксперимента, используемых в практических исследованиях. Свойства полных и дробных факторных планов для линейных моделей. Планы для моделей, содержащих линейные члены и взаимодействия различного порядка.
- 3439. Платоновы тела
История изучения правильных многогранников. Космический кубок Кеплера. Анализ его теории о связи многогранников с шестью открытыми к тому времени планетами Солнечной системы. Основные виды правильных многогранников в трёхмерном евклидовом пространстве.
- 3440. Плоскости в пространстве
Исследование способов задания плоскости. Взаимное расположение плоскостей в пространстве. Признаки и свойства параллельности плоскостей. Двугранные углы и угол между двумя плоскостями. Двугранный угол и его измерение. Свойства перпендикулярных плоскостей.
- 3441. Плоскость и пространство
Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.
Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.
Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.
Введение геометрического объекта в систему отсчета. Использование метода секущих плоскостей и вспомогательных сфер. Построение проекции объекта, стоящего на плоскости. Геометрические свойства равнобедренного треугольника. Натуральная величина высоты.
Методика проведення уроку по систематизації і узагальненню вмінь учнів щодо розв'язування задач на обчислення суми кутів опуклого многокутника, площ квадрата, прямокутника, паралелограма, трикутника і трапеції; елементів (сторін, кутів) за відомою площею.
Зміст та властивості площі многокутника. Зміст теореми про площу прямокутника. Вміння відтворювати зміст вивчених понять та теорем. Обчислення площ прямокутника і паралелограма. Обчислення площі паралелограма за стороною та проведеною до неї висотою.
- 3447. Площа трапеції
Закріплення знання формул для обчислення площі трикутника. Розглядання формули для обчислення площі трапеції. Формування в учнів уміння та навичок застосовувати цю формулу для обчислення площі трапеції. Обчислення висоти трапеції та її середньої лінії.
Особенности расчета площади поверхности тела, полученного при вращении. Параметры прямоугольного треугольника, его вращение вокруг гипотенузы. Вращение прямоугольной и равнобокой трапеций вокруг большего основания. Использование теоремы Пифагора.
Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.
Отримання фінітного нескінченно диференційовного розв'язку функціонально-диференціального рівняння, що будується за допомогою оператора Гельмгольця. Візуалізація результатів дії диференційних операторів Лапласа та Гельмгольца на досліджувану функцію.