Биортогональные разложения различных классов функции и их применение в разделах математики. Возникновение необходимости построения биортогональных систем, коэффициенты которых легко выражаются. Условия, обеспечивающие восстановление непрерывной функции.
Описание построения некоторых функциональных пространств дифференцируемых функций многих переменных и построенных весовых пространств. Построение усредняющей функции и основного тождества. Нахождение вектора с целыми неотрицательными координатами.
Исследование основных векторных соотношений, особенности их использования в решении математических задач. Структура системы, полученной в силу единственности разложения вектора. Доказательство причисления равенства к основным векторным соотношениям.
Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
Особенности определения суммы матриц. Вычисление определителя третьего порядка. Решение системы линейных уравнений методом Гаусса. Оценка косинуса угла между векторами и плоскостями при известных заданных координатах. Расчет объема тетраэдра и его высоты.
Оценка разности спектральных функций для степени оператора Лапласа. Обратные задачи спектрального анализа и интерполяция. Восстановление потенциала в обратной задаче спектрального анализа для возмущенной степени оператора Лапласа в пространстве R2.
Определение вероятности случайного события. Вероятность использования кредита не по назначению среди выборки заемщиков. Закон распределения числа бракованных деталей. Графическое решение распределения случайной величины. Группировка статистического ряда.
Идея построения теории меры для вычисления площади плоской фигуры. Особенности и примеры вычисления жордановой меры множеств. Определение меры ограниченного множества, составленного из точек прямой, с точки зрения меры Лебега. Проблемы теории меры.
Расчет угла между прямой и плоскостью. Определение уравнения по геометрическим свойствам поверхности. Вычисление свойств поверхности по виду уравнения. Функции сферы, эллипсоида, параболоида, гиперболоида, цилиндрической и конической поверхности.
Способы определения вероятности осуществления того или иного события. Оценка математического ожидания и дисперсии некой величины, построение графика функции распределения. Оценка плотности вероятности. Расчет диаграммы рассеивания и линии регрессии.
Рассмотрение особенностей построения замечательных кривых. Вид уравнения циссиоды Диоклеса в прямоугольной декартовой системе. Определение и построение уравнения кривой лемнискаты Бернулли. Построение уравнений и кривых кардиоиды и овала Кассини.
Гипотеза о рудиментарных математических способностях рыб. Счетные знаки в израильских школах. Содержание теоремы про "двух милиционеров". Приближенные значения числа "Пи". Арифметические навыки насекомых. Математическое описание расположения листьев.
Основные особенности алгоритмов выполнения линейных и нелинейных операций в системе обобщенных комплексных чисел. Изучение изоморфизма систем комплексных чисел и обобщенных комплексных чисел. Геометрическая интерпретация обобщенных комплексных чисел.
Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
- 3645. Некоторые особенности численной реализации нелинейных интегральных моделей динамических объектов
Характеристика различных видов нелинейных интегральных динамических моделей, и также подходов к построению численных алгоритмов их компьютерной реализации. Выбор или разработка необходимого, часто специального, численного алгоритма для методов квадратур.
Соотношения возможных формально-идеальных чисел и существующих содержательно-материальных вещей как проблема адекватной математики. Исследование физически объективных числовых закономерностей, которые определяют формальную структуру существующего мира.
Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.
Почти контактные метрические многообразия специального вида. Тензорное поле кручения внутренней связности. Структуры, возникающие на распределение нулевой кривизны сасакиевых многообразий. Трансверсальная составляющая тензора кривизны некоторой связности.
- 3649. Некоторые теоремы Штурма
Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
Определение бэта–функций интегралом Эйлера первого рода. Гамма-функции, определяемые интегралом Эйлера второго рода как удобное средство для вычисления некоторых интегралов. Производная гамма функции и вывод формулы Стирлинга, вычисление интегралов.
Разработка и анализ методики исследования неподвижных точек автономной системы дифференциальных уравнений для подтверждения гипотезы о существовании решения этой системы с хаотическими колебаниями. Определение параметров, управляющих ее поведением.
- 3652. Нелинейная регрессия
Принцип минимизации суммы квадратов отклонений. Численные методы поиска регрессионных коэффициентов для нелинеаризуемых задач. Проблема сравнения качества альтернативных регрессионных моделей. Нормировка значений зависимых переменных по методу Зарембки.
- 3653. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
Выявление нелинейности преобразований Лоренца для времени, изучение следствий этого факта. Тензорное исчисление в теории относительности. Некорректность определения скаляра в тензорном исчислении. Четырехвектор пространства-времени физической реальности.
Скалярное произведение векторов: определение. Характеристика векторного произведения векторов, его свойства (антиперестановочность множителей, распределительности относительно сложения и пр.). Определение смешанного произведения векторов, примеры задач.
- 3656. Нелинейные системы
Методы анализа нелинейных систем. Влияние нелинейностей на свойства систем. Фазовые портреты нелинейных систем. Устойчивость нелинейных систем "в малом", "в большом" и "в целом". Метод статистической линеаризации. Структурная схема нелинейной системы.
Определение и особенности нелинейных систем. Методы фазовых портретов и гармонической линеаризации. Исследование вибрационной помехоустойчивости систем управления. Устойчивость нелинейных систем, метод Ляпунова. Критерий абсолютной устойчивости Попова.
Розв’язність задачі Діріхле для еліптичного рівняння в області з малим кутом, для квазілінійного еліптичного недівергентного рівняння в області з конічною точкою; нерівності гострого кута для пар лінійних еліптичних операторів в області з кутовою точкою.
- 3659. Нелінійне програмування
Постановка сепарабельних, квадратичних задач нелінійного програмування. Метод множників Лагранжа. Необхідні умови існування сідлової точки. Задача з лінійною цільовою функцією й нелінійною системою обмежень. Вивчення класичної методики оптимізації.
Два підходи організації ітераційних процесів для розв’язання нелінійних задач при формуванні дискретних образів статико-геометричним методом. Приклади, які демонструють використання цих принципів. Проведення аналізу залежності похибки від числа ітерацій.
